Are Ideas Getting Harder to Find?
A Semi-Endogenous Perspective

Chad Jones

The Norton Economics Speaker Series

February 8, 2022
Outline:

- A simple semi-endogenous growth model
- Are ideas getting harder to find?
- Why future growth could slowdown
- Why future growth might not slow and could speed up

(draws on “The Past and Future of Economic Growth” essay)
A Simple Model of Semi-Endogenous Growth
U.S. GDP per Person

PER CAPITA GDP (RATIO SCALE, 2020 DOLLARS)

2.0% per year
The “Infinite Usability” of Ideas (Paul Romer, 1990)

- **Objects**: Almost everything in the world
 - Examples: iPhones, airplane seats, and surgeons
 - Rival: If I’m using it, you cannot at the same time
 - The fundamental scarcity at the heart of most economics

- **Ideas**: They are different — nonrival = infinitely useable
 - Can be used by any number of people simultaneously
 - Examples: calculus, HTML, chemical formula of new drug
The Nonrivalry of Ideas ⇒ Increasing Returns

• Familiar notation, but now let A_t denote the “stock of knowledge” or ideas:

$$Y_t = F(K_t, L_t, A_t) = A_t K_t^\alpha L_t^{1-\alpha}$$

• Constant returns to scale in K and L holding knowledge fixed. Why?

$$F(\lambda K, \lambda L, A) = \lambda \times F(K, L, A)$$

• But therefore increasing returns in K, L, and A together!

$$F(\lambda K, \lambda L, \lambda A) > F(\lambda K, \lambda L, A)$$

- Replication argument + Nonrivalry ⇒ CRS to objects
- Therefore there must be IRS to objects and ideas
A Simple Model

Final good
\[Y_t = A_t^\sigma L_yt \]

Ideas
\[\frac{\dot{A}_t}{A_t} = R_t A_t^{-\beta} \]

Resource constraint
\[R_t + L_yt = L_t = L_0e^{nt} \]

Allocation
\[R_t = \bar{s}L_t, \quad 0 < \bar{s} < 1 \]
A Simple Model

Final good

\[Y_t = A_t^\sigma L_yt \]

Ideas

\[\frac{\dot{A}_t}{A_t} = R_tA_t^{-\beta} \]

Resource constraint

\[R_t + L_yt = L_t = L_0e^{nt} \]

Allocation

\[R_t = \bar{s}L_t, \quad 0 < \bar{s} < 1 \]
A Simple Model

Final good

\[Y_t = A_t^\sigma L_{yt} \]

Ideas

\[\frac{\dot{A}_t}{A_t} = R_t A_t^{-\beta} \]

Resource constraint

\[R_t + L_{yt} = L_t = L_0 e^{nt} \]

Allocation

\[R_t = \bar{s} L_t, \quad 0 < \bar{s} < 1 \]

\[y_t \equiv \frac{Y_t}{L_t} = A_t^\sigma (1 - \bar{s}) \]

On BGP, \(\dot{A}/A = \text{Constant} \Rightarrow \)

\[A_t^* = \text{Constant} \cdot R_t^{\frac{1}{\beta}} \]
A Simple Model

Final good

\[Y_t = A_t^\sigma L y_t \]

Ideas

\[\frac{\dot{A}_t}{A_t} = R_t A_t^{-\beta} \]

Resource constraint

\[R_t + L y_t = L_t = L_0 e^{nt} \]

Allocation

\[R_t = \bar{s} L_t, \quad 0 < \bar{s} < 1 \]

\[y_t \equiv \frac{Y_t}{L_t} = A_t^\sigma (1 - \bar{s}) \]

On BGP, \(\dot{A}/A = \text{Constant} \Rightarrow \)

\[A_t^* = \text{Constant} \cdot R_t^{1/\beta} \]

Combine these two equations...
Steady State of the Simple Model

- Level of income on the BGP (where $\gamma \equiv \frac{\sigma}{\beta}$)

$$y_t^* = \text{Constant} \cdot R_t^\gamma$$

⇒ BGP growth rate:

$$g_y = \frac{\sigma n}{\beta} = \gamma n$$

Long-Run Growth = Degree of IRS, $\gamma \equiv \frac{\sigma}{\beta}$ × Rate at which scale grows
From Nonrivalry to Growth

• Objects: Add 1 computer ⇒ make 1 worker more productive; for a million workers, need 1 million computers

 Output per worker \sim \# \text{ of computers per worker}

• Ideas: Add 1 new idea ⇒ make unlimited \# more productive or better off.
 - E.g. cure for lung cancer, drought-resistant seeds, spreadsheet

 Income per person \sim \text{the aggregate stock of knowledge, not on the number of ideas per person.}

 \textit{But it is easy to make aggregates grow: population growth!}

 IRS ⇒ bigger is better.
Where does growth ultimately come from?

More people \Rightarrow more ideas \Rightarrow higher income / person

That’s IRS associated with the nonrivalry of ideas
Are ideas getting harder to find?

Bloom, Jones, Van Reenen, Webb (2020)
Overview

• New stylized fact:

Exponential growth is getting harder to achieve.

\[
\text{Economic growth} = \text{Research productivity} \times \text{Number of researchers}
\]

e.g. 2% or 5% ↓ (falling) ↑ (rising)

• Aggregate evidence: well-known (Jones 1995)

• This paper: micro evidence

 ○ Moore’s law, Agricultural productivity, Medical innovations

 ○ Firm-level data from Compustat

Exponential growth results from the rising research effort that offsets declining research productivity.
The Steady Exponential Growth of Moore’s Law

curve shows transistor count doubling every two years
Moore’s Law and Measurement

• **Idea output:** Constant exponential growth at 35% per year

\[
\frac{\dot{A}_t}{A_t} = 35\%
\]

• **Idea input:** R&D spending by Intel, Fairchild, National Semiconductor, TI, Motorola (and 25+ others) from Compustat

 ○ Pay close attention to measurement in the 1970s, where omissions would be a problem...

 ○ Use fraction of patents in IPC group H01L (“semiconductors”) to allocate to Moore’s Law
Evidence on Moore’s Law

GROWTH RATE

Research effort: 18x (+6.8% per year)

Effective number of researchers (right scale)

<table>
<thead>
<tr>
<th>Year</th>
<th>Effective number of researchers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>1.0</td>
</tr>
<tr>
<td>1980</td>
<td>3.5</td>
</tr>
<tr>
<td>1990</td>
<td>10.0</td>
</tr>
<tr>
<td>2000</td>
<td>20.0</td>
</tr>
<tr>
<td>2010</td>
<td>35.0</td>
</tr>
</tbody>
</table>

FACTOR INCREASE SINCE 1971

$\frac{\dot{A}_{it}}{A_{it}}$ (left scale)
Summary of Evidence

• Moore’s Law
 o 18x harder today to generate the doubling of chip density
 o Have to double research input every decade!

• Qualitatively similar findings in rest of the economy
 o Agricultural innovation (yield per acre of corn and soybeans)
 o Medical innovations (new drugs or mortality from cancer/heart disease)
 o Publicly-traded firms
 o Aggregate economy

New ideas are getting harder to find!
Summary: Evidence on Research Productivity

<table>
<thead>
<tr>
<th>Scope</th>
<th>Average annual growth rate</th>
<th>Half-life (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate economy</td>
<td>-5.1%</td>
<td>14</td>
</tr>
<tr>
<td>Moore’s law</td>
<td>-6.8%</td>
<td>10</td>
</tr>
<tr>
<td>Agriculture (seeds)</td>
<td>-5.5%</td>
<td>13</td>
</tr>
<tr>
<td>New molecular entities</td>
<td>-3.5%</td>
<td>20</td>
</tr>
<tr>
<td>Disease mortality</td>
<td>-5.6%</td>
<td>12</td>
</tr>
<tr>
<td>Compustat firms</td>
<td>-11.1%</td>
<td>6</td>
</tr>
</tbody>
</table>
Implications for Growth Theory

- Where does long-run growth come from?

\[
\frac{\dot{A}_t}{A_t} = A_t^{-\beta} \times R_t \quad \text{with} \quad \beta \approx 3
\]

\[
\beta > 0 \Rightarrow \text{ideas are getting harder to find}
\]

\[(\text{more accurately: TFP growth gets harder to achieve})\]

Red Queen Interpretation of SEG:

Maintaining constant TFP growth requires exponential growth in research effort
- You run faster and faster just to maintain 2% growth
Historical Growth Accounting

In LR, all growth from population growth. But historically...?
Extended Model

- Include physical capital K, human capital per person h, and misallocation M

$$Y_t = K_t^\alpha (Z_t h_t L_Y t)^{1-\alpha}$$

$$Z_t \equiv A_t M_t$$

$$A_t^* = R_t^\gamma = (s_t L_t)^\gamma$$

- Write in terms of output per person and rearrange:

$$y_t = \left(\frac{K_t}{Y_t} \right)^{1/\alpha} A_t M_t h_t \ell_t (1 - s_t)$$

- In LR, all growth from population growth. But historically...?
Growth Accounting Equations

\[d \log y_t = \frac{\alpha}{1 - \alpha} d \log \frac{K_t}{Y_t} + d \log h_t + d \log \ell_t + d \log (1 - s_t) + d \log M_t + d \log A_t \]

GDP per person

Capital-Output ratio

Educational att.

Emp-Pop ratio

Goods intensity

TFP growth

where

\[\text{TFP growth} \equiv d \log M_t + d \log A_t = d \log M_t + \gamma d \log s_t + \gamma d \log L_t \]

Misallocation

Ideas

Misallocation

Research intensity

LF growth

All terms are zero in the long run, other than \(\gamma n \). Assume \(\gamma = 1/3 \)
Historical Growth Accounting in the U.S., 1950s to Today

Components of 2% Growth in GDP per Person

- K/Y: 0pp
- Human capital per person: 0.5pp
- Employment-Pop Ratio: 0.2pp
- TFP: 1.3pp
Historical Growth Accounting in the U.S., 1950s to Today

Components of 2% Growth in GDP per Person

- K/Y: 0pp
- Human capital per person: 0.5pp
- Employment-Pop Ratio: 0.2pp
- TFP: 1.3pp

Components of 1.3% TFP Growth

- Population growth: 0.3pp
- Research intensity: 0.7pp
- Misallocation: 0.3pp
Summary of Growth Accounting

- Even in a semi-endogenous growth framework where all LR growth is γn,
 - Other factors explain more than 80% of historical growth

- Transitory factors have been very important, but all must end:
 - rising educational attainment
 - rising LF participation
 - declining misallocation
 - increasing research intensity

- Implication: Unless something changes, growth must slow down!
 - The long-run growth rate is $\approx 0.3\%$, not 2%
The Future of Economic Growth?
Private business sector
1990-2003: 1.2%
2003-2015: 0.7%

Manufacturing
1990-2003: 1.6%
2003-2014: 0.2%
Research Employment in Select Economies

- **United States**
 - 1981-2002: 3.2%
 - 2002-2014: 2.1%

- **European Union (15 countries)**
 - 1981-2002: 3.7%
 - 2002-2015: 3.1%

- **Japan**
 - 1981-2002: 3.3%
 - 2002-2015: 0.5%
The Future of U.S. Growth?

- **Headwinds**
 - Ideas are getting harder to find
 - Educational attainment is leveling out
 - Population growth slowing in advanced countries

- **Tailwinds**
 - China and India (each as populous as US/Japan/Europe)
 - How many future Thomas Edisons and Jennifer Doudnas are waiting to realize their potential?

- **Uncertainties**
 - To what extent can machines/AI substitute for labor/researchers?
 - The shape of the future idea production function?
Important Questions for Future Research

• How large is the degree of IRS associated with ideas, γ?

• What is the social rate of return to research?
 - Are we underinvesting in basic research?

• Better growth accounting: contributions from DARPA, NIH, migration of European scientists during WWII, migration more generally, idea diffusion

• Automation ongoing for 150 years, but growth slowing not rising: why?