
Journal of Global Optimization
https://doi.org/10.1007/s10898-022-01198-0

Fitting feature-dependent Markov chains

Shane Barratt1 · Stephen Boyd1

Received: 13 September 2021 / Accepted: 30 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
We describe a method for fitting a Markov chain, with a state transition matrix that depends
on a feature vector, to data that can include missing values. Our model consists of separate
logistic regressions for each row of the transitionmatrix.We fit the parameters in themodel by
maximizing the log-likelihood of the dataminus a regularizer.When there aremissing values,
the log-likelihood becomes intractable, and we resort to the expectation-maximization (EM)
heuristic. We illustrate the method on several examples, and describe our efficient Python
open-source implementation.

Keywords Markov chains · Convex optimization · Expectation maximization · Missing data

1 Introduction

Time-varyingMarkov chain.We consider data consisting of a discrete state st ∈ {1, . . . , n}
and a feature vector xt ∈ Rm , where t = 1, 2, . . . denotes time (also called the period or
epoch). We model the discrete state sequence as a time-varying Markov chain, i.e.,

Prob(st+1 = j | st = i) = (Pt)i j , i, j = 1, . . . , n,

where Pt ∈ P is the transition matrix at time t , P = {P ∈ Rn×n+ | P1 = 1} is the set of
(row) stochastic matrices, and 1 is the vector with all entries one. The i th row of Pt gives the
probability distribution of the successor state st+1 given st = i . The Markov property is the
fact that under this model, given st , the future states sτ , τ > t , are independent of the past
states sη, η < t .
Transition matrix predictor.We model the transition matrix Pt as a function of the current
feature vector xt , i.e.,

B Stephen Boyd
boyd@stanford.edu

1 Stanford University, Stanford, United States

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-022-01198-0&domain=pdf
http://orcid.org/0000-0001-8353-6000

Journal of Global Optimization

Pt = φ(xt),

where φ : Rm → P is the transition matrix predictor, so our overall model for st is a feature-
dependent Markov chain. We let φi : Rm → Rn denote the i th row of φ (transposed),
i.e.,

φ(x) =
⎡
⎢⎣

φ1(x)T

...

φn(x)T

⎤
⎥⎦ .

We interpret φi (xt) as the feature-dependent probability distribution of the successor state
st+1, when st = i . The predictor φ is parametrized by a set of parameters, which we denote
by θ ∈ �. We will often suppress this dependence in our notation.
Logistic predictor.We will focus on the logistic predictor, which has the form

φi (x) = exp yi
1T exp yi

, yi = Ai x + bi , i = 1, . . . , n, (1)

where exp applies elementwise to the vector yi ∈ Rn , and 1 is the vector with all entries one.
The parameters in this predictor are θ = (A1, . . . , An, b1, . . . , bn), where Ai ∈ Rn×m, bi ∈
Rn , i = 1, . . . , n. Thus we have a separate logistic regression model for each row of the
transition matrix, i.e., each value of the current state [12]. The total number of (scalar)
parameters in our model is n2(m + 1). The parameters are redundant, since adding any
multiple of 1 to bi yields the same probability distribution φi . We can handle this redundancy
by requiring that 1T bi = 0, or just letting regularization, described below, take care of it.
Prior sparsity pattern. The methods we describe are readily extended to handle the case
when some state transitions are known to be impossible, which is the same as saying that Pt
has some given sparsity pattern. This is handled by modifying φi (x) to be zero in the entries
to which state i cannot transition, and using a logistic predictor for only the allowed next
states. This means that the height of Ai and bi is no longer n, but ni ≤ n, the number of
allowed successor states of state i . The notation for this extension gets complicated, however,
so we describe the simpler case when Pt is full.
Using the state as a feature. In our predictor (1) we have a separate logistic model φi for
each current state i . We mention here a simpler predictor that instead uses the current state
as a feature in a single logistic model. The simpler predictor has the form

φi (x) = exp y

1T exp y
, y = Ax + bi ,

with parameters A ∈ Rn×m and b1, . . . , bn ∈ Rn . The total number of scalar parameters in
this model is n(m + n), compared to n2(m + 1) for our predictor (1).

In this predictor the current state enters φi (x), the next state distribution conditioned on
st = i , in a very specific and constrained way. At the same time the feature vector x enters
each φi (x) in a similar way. For example, each φi has the same monotonicity with respect to
each feature x j . While we can imagine cases in which this simpler predictor would perform
well, we have observed that our predictor, with an independent logistic regression for each
current state, performs better.
Training data. We consider two types of training data: full data, and missing data. In the
case of full data, our data consists of K sequences, with lengths Tk , k = 1, . . . , K , of the
state and feature,

sk1 , . . . , s
k
Tk , xk1 , . . . , x

k
Tk−1, k = 1, . . . , K . (2)

123

Journal of Global Optimization

In the case of missing data, we allow some states to be unknown or missing, which we denote
as skt =?. We will assume that all of the features, however, are given, since there are many
methods that can be used to fill in feature values that are missing, ranging from simple ones
like replacing missing entries with an empirical average, or using the last known value, to
sophisticated ones like model-based imputation [2].

2 Fitting without missing data

In this section we describe how to fit the model parameters when there is no missing data.
This material is straightforward and well known; we include it for completeness, and also to
refer back to when we consider the more complex case when there is missing data.

2.1 Log-likelihood

The log-likelihood of the dataset (2) is

L(θ) =
K∑

k=1

Tk−1∑
t=1

log(Pk
t)skt s

k
t+1

, (3)

with Pk
t = φ(xkt), which depends on θ . The first sum is over the K data sequences and

the second sum is over Tk − 1 entries in each sequence. With the logistic predictor (1), the
log-likelihood is

L(θ) =
K∑

k=1

Tk−1∑
t=1

(
(ykt)skt+1

− log(1T exp ykt)
)

,

where ykt = Askt
xkt + bskt . The log-likelihood is a concave function of ykt , and hence a

concave function of θ , i.e., A1, . . . , An and b1, . . . , bn . (We use the fact that the log-sum-exp
function is convex, and the composition of an affine function and a convex function is convex
[7,§3.2.2].)

2.2 Fitting

We choose the parameter θ to maximize the log-likelihood of the training dataset minus a
regularizer function of the parameter. To choose θ we solve the optimization problem

maximize L(θ) − R(θ) (4)

with variable θ . Here the convex function R : � → R is a regularizer, meant to discourage
over-fitting, i.e., to improve the log-likelihood on new, unseen data. This fitting problem is a
convex optimization problem, readily solved by a number of methods [7].

2.3 Regularizers

We describe a few useful regularizers here. Each of these includes a positive hyper-parameter
λ that is selected via held-out or cross validation. Most of the regularizers that we describe
below are functions only of the parameter matrices A1, . . . , An and not the offset parameters
b1, . . . , bn . We will use the notation

123

Journal of Global Optimization

A =
⎡
⎢⎣

A1
...

An

⎤
⎥⎦ ∈ Rn2×m

to denote the vertically stacked parametermatrices. Let a1, . . . , am ∈ Rn2 denote the columns
of A, i.e.,

A = [
a1 · · · am

]
.

The vector a j contains all the model coefficients that multiply x j , the j th component of the
feature vector.
Sum of squares. The simplest and most traditional regularizer is the sum of squares regu-
larizer,

R(θ) = λ‖A‖2F = λ

n∑
i=1

‖Ai‖2F = λ

m∑
j=1

‖a j‖22,

where ‖·‖F denotes the Frobenius norm. This regularizer is separable, i.e., a sum of functions
of each (Ai , bi). This means the entire fitting problem is separable in (Ai , bi), and can be
solved as n separate sum of squares regularized logistic regression problems.
Sum of column norms. The sum-of-column-norms regularizer is

R(θ) = λ(‖a1‖2 + · · · + ‖am‖2).
(Note the norms here are not squared; if theywere, thiswould coincidewith the sumof squares
regularizer.) This non-separable regularizer is well known to promote column sparsity, i.e.,
a j = 0 for many values of j [31]. This corresponds to feature selection, since when a j = 0,
the feature x j is not used.

For λ large enough, this regularizer results in all a j being zero, i.e., a predictor that does
not depend on any of the features. Indeed the threshold or critical value of λ is

λmax = max
j=1,...,m

‖∇a j L(0)‖2.

(This result can be derived from basic convex analysis.) The gradients are readily expressed
in terms of the data, and readily computed. We have A = 0 if and only λ ≥ λmax. This is
useful for selecting values of λ.
Dual norm. Another interesting non-separable regularizer is the dual norm regularizer,

R(θ) = λ‖A‖∗,

where ‖·‖∗ is the dual of the spectral norm, i.e., the sumof the singular values. This regularizer
encourages A to be low rank [23]. When A has rank r , say, A = UV with U ∈ Rn2×r

and V ∈ Rr×m , we can decompose the prediction φ(xt) into two steps. First we compute
zt = V xt ∈ Rr , and then we form Axt = V zt . We can interpret the vector time series zt
as a latent or compressed feature vector, which contains everything we need to determine
Pt = φ(xt) [3].

As is the case with the sum of column norms regularizer, for λ large enough, the dual
norm regularizer results in A = 0. For the dual norm regularizer the critical value of λ is

λmax = ‖∇AL(0)‖2,

123

Journal of Global Optimization

where ‖·‖2 is the spectral norm ormaximum singular value. The gradient is readily expressed
in terms of the data and computed. We have A = 0 if and only λ ≥ λmax. This is useful for
selecting values of λ.
Laplacian across states. The next regularizer we mention is Laplacian regularization across
the discrete states, which depends on the offset coefficients b1, . . . , bn as well as the coef-
ficient matrices A1, . . . , An . This regularizer starts with a weighted graph on the states
1, . . . , n, given by the weighted adjacency matrix W ∈ Rn×n+ . These weights express our
prior knowledge of similarity or closeness between the states: Wi j large means that states
i and j are considered similar. This might arise when the states are discretizations of con-
tinuous quantities, for example, deciles. In this case we would use a chain graph to signify
that state 3 (third decile) is close to states 2 and 4 (second and fourth deciles). Laplacian
regularization is the quadratic form

R(θ) = λ

n∑
i=1

n∑
j=1

Wi j
(‖Ai − A j‖2F + ‖bi − b j‖22

)
,

which encourages the parameters of the rows of φ associated with similar states to be near
each other.

When the graph is connected and λWi j are large, this regularization encourages all Ai

being very close, and all bi being close. This implies that the distributions φi (x) are very
close. This in turn is interpretable as modeling st not as Markov, but as independent samples
from a (feature-dependent) distribution on the states.
Laplacian across features. The final regularizer we consider is Laplacian regularization
across the features. This regularizer starts with a weighted graph on the features 1, . . . ,m,
given by a weighted adjacencymatrixW ∈ Rm×m+ . These weights express similarity between
the effect the features have on the transition matrix. This might arise when the features are
one-hot embeddings of an ordinal quantity, e.g., age. In this case we can use a chain graph
to signify that the model coefficients for age 50 should be close to the model coefficients for
ages 49 and 51. Laplacian regularization is the quadratic form

R(θ) = λ

m∑
i=1

m∑
j=1

Wi j‖ai − a j‖22,

where, again, ai is the i th column of A.
Choosing one or more regularizers. The choice of one or more regularizers, as well as
the associated hyper-parameters, is driven by several objectives, and of course the specific
application. The first objective is good out of sample validation, as described in the next
section. The second is interpretability of the resulting feature-dependentMarkov chainmodel.
For example, using a dual norm regularizer gives us zt , which we can interpret as a latent
feature; a sum of column norms regularizer gives us feature selection.

2.4 Judging a predictor

We judge a predictor φ by its log-likelihood (3) on (unseen) test data

s̃k1 , . . . , s̃
k
T̃k

, x̃ k1 , . . . , x̃
k
T̃k−1

, k = 1, . . . , K̃ . (5)

When the test data contains missing data, we only include terms in the log-likelihood (3) for
which both skt and skt+1 are known, i.e., we judge using the log likelihood over non-missing
pairs

123

Journal of Global Optimization

Lnmp(θ) =
K∑

k=1

∑

skt ,skt+1 	=?

log(Pk
t)skt s

k
t+1

. (6)

3 Fitting withmissing data

We now consider the more complex and difficult case where some of the states skt in our
training dataset are unknown or missing. If there are more than just a few missing states, the
log-likelihood is intractable to compute, much less optimize over, but we can fit the model
by approximately maximizing the log-likelihood minus a regularization function using the
well known expectation-maximization (EM) algorithm.

Without loss of generality, we assume that the first and last state in each sequence, sk1 and
skT , are known. If they are not, we can truncate that sequence to the first and last known value
of skt . We remind the reader that we assume all the features are known, i.e., none are missing.

3.1 Log-likelihood withmissing data

When there is missing data, the (marginalized) log-likelihood is a complicated function of
θ . It has the form

L(θ) =
K∑

k=1

log

⎛
⎜⎝

∑

sk1 ,...,skT

Prob(sk1 , . . . , s
k
T | known; θ)

Tk−1∏
t=1

(Pk
t)skt s

k
t+1

⎞
⎟⎠ ,

where the first sum is over the sequences, the sum inside the log is over all possible values
of the missing entries, and Prob(sk1 , . . . , s

k
T | known; θ) is the conditional probability of

the sequence sk1 , . . . , s
k
T conditioned on the observed state values, under our model with

parameter value θ . (The matrix Pk
t also depends on θ , but we do not explicitly show this

dependence.) The inner sum is over nM terms, where M is the number of missing state
values. Unless M is very small, it is intractable to compute L(θ), or to maximize it minus a
regularizer. So we turn to a powerful heuristic, EM.

3.2 Expectation-maximization

The expectation-maximization (EM) algorithm is a powerful heuristic for approximately
performing maximum likelihood on incomplete data [11], and is perfectly suited for the task
at hand. We adopt notation commonly used for EM, defining X to consist of all skt that are
known, and Z to consist of all skt that are not known.

EM consists of two steps: the E-step and the M-step, which are iterated to generate a
sequence of parameters θ j , starting from an initial guess θ0, where the superscript denotes
iteration (of the EM algorithm). It is well known that each EM iteration will increase the
objective, but there is no guarantee that the global maximum will be reached [30]. However,
in our experiments, we have found it to be a very good heuristic. We describe the actual
realization of these steps for our particular problem below.
The E-step. In the E-step, we construct an approximate log-likelihood function using θ j ,

Q j (θ) = E
Z |X;θ j

logProb(X , Z; θ)

123

Journal of Global Optimization

= E
Z |X;θ j

⎡
⎣

K∑
k=1

Tk−1∑
t=1

log(Pk
t)skt s

k
t+1

⎤
⎦

=
∑K

k=1

∑Tk−1

t=1

∑
Z
Prob(Z | X; θ j) log(Pk

t)skt s
k
t+1

=
∑K

k=1

∑Tk−1

t=1

∑
skt ,skt+1

Prob(skt , s
k
t+1 | X; θ j) log(Pk

t)skt s
k
t+1

.

Here Pk
t depends on θ , but we do not explicitly show this dependence. Computing Q j boils

down to finding the joint probabilities Prob(skt , s
k
t+1 | X; θ j), which are weights in the

log-likelihood.
We need to compute the joint probabilities Prob(skt , s

k
t+1 | X; θ j) for t = 1, . . . , Tk − 1

and k = 1, . . . , K . For each sequence sk1 , . . . , s
k
Tk
, we do the following. (We will suppress

the dependence on k, i.e., we write st , xt , and Pt in place of skt , x
k
t , and Pk

t .) First we compute
P1, . . . , PTk−1 based on θ j . If st and st+1 are both known, then Prob(st , st+1 | X , θ j) is
deterministic, i.e., equal to one for the observed transition and zero for others. To find the
joint distribution of successive states when either st or st+1 is not known, we let p ≤ t denote
the time of the last previous known state, and q ≥ t denote the time of the next known state.
Since sp and sq are known, we have (by the Markov property)

Prob(st , st+1 | X; θ j) = Prob(st , st+1 | sp, sq ; θ j).

By Bayes rule,

Prob(st , st+1 | sp, sq ; θ j) ∝ Prob(sp, sq | st , st+1; θ j)Prob(st , st+1; θ j),

= Prob(sp | st ; θ j)Prob(sq | st+1; θ j)Prob(st , st+1; θ j),

= (Pp · · · Pt−1)spst ◦ (Pt+1 · · · Pq−1)st+1sq ◦ (Pt)st st+1 ,

where ◦ is the elementwise (Hadamard) product. This quantity is easy to compute recursively.
If we have a sequence of length T with M missing entries, the complexity of evaluating the
model to get P1, . . . , PT−1 is Tn2m, and the complexity of evaluating the joint probabilities
above is Mn3. Therefore, the overall complexity is n2(Tm+Mn). The E-step is very similar
in nature to the forward-backward algorithm used for hidden Markov models [4].
The M-step. In the M-step, we choose θ j+1 as the solution of

maximize Q j (θ) − R(θ),

where R is a convex regularizer, which is a convex optimization problem. The problem
above is simply a weighted version of the fitting problem (4) with more data points, so
similar methods can be used to solve it. That is, each pair skt , s

k
t+1 can result in one or more

data points. When both are not missing, it results in one data point with weight one. When
just one is missing, it results in n data points with weights that sum to one. When both
are missing, it results in n2 data points with weights that sum to one. In sum, if there are
M missing entries in a sequence of length T , we will have at most roughly M2 + T − M
pairs. In the logistic regression nomenclature, it is equivalent to a dataset with probabilistic
outcomes (over {1, . . . , n}) and weights attached to each data point. Also, we note that in
the case of all known entries, the approximate log-likelihood is the same as the case without
missing data, so EM will converge in just one step.
Initialization. EM requires an initial parameter θ0. A simple initialization for EM uses the
log-likelihood found using all non-missing pairs of successive states given in (6). We choose
θ0 as the maximizer of

123

Journal of Global Optimization

Lnmp(θ) − R(θ).

This function is concave, so this is a convex optimization problem.

4 Implementation

In this section we describe our implementation of the ideas described in this paper, which
have been collated into an open-source Python packagemkvchain, which is freely available
online at

www.github.com/cvxgrp/mkvchain.

The core class in the package isFeatureDependentMarkovChain, which, at initial-
ization, takes the number of states, and optionally a sparsity pattern represented by a binary
mask, various regularization parameters, and optimization parameters such as tolerances and
the maximum number of EM iterations. To fit the model, we call the fit method, which
takes the arguments:

• states. A list of (integer) states. Missing entries are indicated by NaNs.
• features. A numpy array of features, with length at least the number of states minus

one.
• lengths. A list of (integer) lengths of each sequence. If the data consists of only one

sequence, then this argument should be equal to [len(states)].

This method can also be warm-started by setting warm_start=True. The fit method
implements the EM algorithm described in Sect. 3, using pytorch for matrix operations
[21], the L-BFGS algorithm for when the regularizer is smooth, and an adaptive proximal
gradient method for when the regularizer includes a non-smooth regularizer, e.g., the sum of
column norms or dual norm.

Once the model is fit, it can be used via either the predict or score method. The
predict method takes as its argument a feature matrix and returns a transition matrix for
each row of the feature matrix. The score takes the same first three arguments as the fit
method, and evaluates the log-likelihood of the dataset using only consecutive known states,
i.e., (6).

5 Example: Trading volume

In this example we fit a feature-dependent Markov chain to the daily trading volume of a
stock.
States. We start with the daily trading volume, in number of shares, of the JNJ (Johnson
& Johnson) stock ticker, from 2000 to 2021, shown in Fig. 1. We split this data into a
length 3000 training sample, a length 1000 validation sample, and a length 1309 test sample,
corresponding roughly to years 2000–2011, 2012–2015, and 2015–2021, respectively.

We consider as the discrete state the quintile of the daily volume, resulting in n = 5 states.
(The thresholds for the quintiles are determined based on the training data.) We label these
states as low, belowaverage, average, above average, and high volume.The quintile thresholds
are given in Fig. 1 as horizontal dashed lines, including the 0th and 100th percentiles (i.e., the
minimum and maximum values). We can see one period in 2012 when the trading volume
exceeds the maximum value that occurred in the training data.

123

Journal of Global Optimization

Fig. 1 Daily log volume of JNJ over the sample period. The dashed horizontal lines show quintile boundaries,
determined by the training data

Fig. 2 Preprocessed VIX and RET60D over the sample period

Features. We consider as features the previous close of the CBOE volatility index (VIX),
which is a measure of implied future volatility, and the trailing 60-day average return of JNJ.
(The total number of features ism = 2.) We preprocess the features by performing a quantile
transform so that each feature has a marginal uniform distribution over the interval [−1, 1],
based on the distribution of values in the training set. These features through the sample
period are plotted in Fig. 2.

5.1 Fitting without missing data

We fit four models to the (full) original data, which are described in order below.

• Empirical. The empirical transition matrix.
• Constant Lap-reg. A constant transition matrix (i.e., A = 0), with chain graph Laplacian

regularization on the states, tuned using the validation sample.
• Feature-dependent.A feature-dependentmodelwith sumof squares regularization, tuned

using the validation sample.
• Feature-dependent Lap-reg. A feature-dependent model with sum of squares plus chain

graph Laplacian regularization on the states, both tuned using the validation sample.

123

Journal of Global Optimization

Table 1 Results withoutmissing data. The first row gives the log-likelihood andMAEof the baseline empirical
model on train, validation, and test samples. The remaning three rows give the increase in log-likelihood over
the baseline model

Predictor Train Validation Test Test MAE

Empirical baseline −3900.401 −1371.396 −1691.016 0.1679

Constant Lap-reg −0.17 0.07 0.88 0.1680

Feature-dependent 72.47 19.22 21.77 0.1627

Feature-dependent Lap-reg 71.18 19.92 28.77 0.1624

Log-likelihood results. In Table 1 we give the train, validation, and test log-likelihoods
of the four models (the final column, test MAE, will be explained below). The first row
gives the log-likelihood for the simple empirical model, and the remaining three rows give
the log-likelihood minus the value for the empirical model. (Thus we use the empirical
model as our reference or baseline; positive numbers means a lift in log-likelihood over
the baseline empirical model.) The best model, judged by test log-likelihood, is the feature-
dependent model with Laplacian regularization on the states. We see that adding Laplacian
regularization to the constant model did not provide a significant lift in log-likelihood.
A next day volume predictor. As a further check on our feature-dependent Markov chain
models, we use them to create a predictor of the next day volume quantile, a number between
0 and 1. We do this by mapping the distribution φi (xt) (for st = i) into its median value
q̂t+1, interpreting φi (xt) as a density on [0, 1] with constant value (φi (xt)) j on the interval
((j − 1)/5, j/5], j = 1, . . . , 5. We compare this prediction to qt+1, the actual quantile of
volume on day t . In the last column of Table 1, we give the mean absolute error (MAE) for
some of our models, where lower is better. We see that performance at this task is reasonably
consistent with the test log-likelihood values in Table 1.

Of coursemany othermethods could be used tomore directly predict the next day quantile,
given the features. We show this approach only to verify that our feature dependent Markov
models improve the prediction over the empirical model.

5.2 Fitting withmissing data

The original data is full, i.e., has no missing data. But we artificially introduce missing data
into the training sample by setting 1500 (about half) of the volume states to ? at random.
In Fig. 3 we show the histogram of the length of consecutive missing entries in the training
dataset. For example, there are 745 consecutive pairs where both states are known, and the
longest sequence of consecutive missing entries is 6.
Models.We fit six models, which are described in order below.

• Constant. A constant baseline model (i.e., A = 0). We ignore pairs of states with one
or more missing values. This is the empirical transition matrix based only on the known
pairs of consecutive states.

• Constant EM. A constant model. We use EM to deal with missing states.
• Constant EM Lap-reg. A constant model with chain graph Laplacian regularization on

the states, tuned using the validation sample. We use EM to deal with missing states.
• Feature-dependent.A feature-dependentmodelwith sumof squares regularization, tuned

using the validation set. We ignore pairs of states with one or more missing values.

123

Journal of Global Optimization

Fig. 3 Histogram of consecutive missing entries in the training dataset

Table 2 Results with missing data. The first row gives the log-likelihood and MAE of the baseline empirical
model on train, validation, and test samples. The remaining five rows give the increase in log-likelihood over
the baseline model

Predictor Train Validation Test Test MAE

Constant baseline −2147.901 −1382.040 −1692.203 0.1671

Constant EM −2.27 6.01 −4.94 0.1670

Constant EM Lap-Reg −3.04 8.45 3.65 0.1677

Feature-dependent 49.42 24.67 24.13 0.1603

Feature-dependent EM 44.87 29.03 18.50 0.1607

Feature-dependent EM Lap-reg 40.91 32.86 32.98 0.1611

• Feature-dependent EM. A feature-dependent model with sum of squares regularization,
tuned using the validation set. We use EM to deal with missing states.

• Feature-dependent EM Lap-reg. A feature-dependent model with sum of squares regu-
larization plus chain graph Laplacian regularization on the states, both tuned using the
validation sample. We use EM to deal with missing states.

Log-likelihood results. In Table 2 we give the train, validation, and test log-likelihood
(evaluated using only the known pairs) of the six models. Several interesting conclusions can
be drawn from the results. First, Constant EM does worse than just Constant on the known
pairs in the training set, which makes sense, because it has a different objective. The feature-
dependent model without EM did about as well on the test set as Constant EM, but the best
model by far was feature-dependent EM with Laplacian regularization, which incorporates
the features, gracefully handles the missing data, and uses the fact that adjacent states are
similar. Counterintuitively, the best model in the missing data case does better than the best
model fit to the full dataset. The only explanation we have is that some form of implicit
regularization is going on, or that the result is just due to chance.
Next day volume prediction. Similar to the case without missing data, we computed the test
MAE of the six models on the task of predicting the next day volume quantile. This is given
in the last column of Table 2. The best model under this metric is Feature-dependent without
EM, instead of Feature-dependent EM Lap-reg, which has the best test log-likelihood.

123

Journal of Global Optimization

Fig. 4 Transition matrix entries versus VIX, for RET60D at its minimum, median, and maximum value.

Fig. 5 Transition matrix entries versus RET60D, for VIX at its minimum, median, and maximum value.

5.3 Interpretations

In Fig. 4 we show the entries of the transition matrix of the Feature-dependent EM Lap-reg
model versus VIX, for RET60D at its minimum, median, and maximum value. As expected,
as VIX becomes larger, so does the probability that the volume increases. In Fig. 5 we show
the entries of the transition matrix versus RET60D, for VIX at its minimum, median, and
maximum value. The return has a more complicated effect than VIX; as the return becomes
larger, the probability that JNJ stays in the high volume state becomes lower. Also, as the
return becomes larger, the probability that the volume stays at average becomes larger. Finally,
in Fig. 6 we show a heatmap of the entry P55 versus all possible values of RET60D and VIX.
This heatmap shows that the entries have a nontrivial dependence on the features.

123

Journal of Global Optimization

Fig. 6 A heatmap of the entry
P55 versus RET60D and VIX.

6 Example: Baseball

In this section we fit a feature-dependent Markov chain to the game state in baseball.
Data.We gather data representing all 191051 at-bats that occurred in the 2018MLB baseball
season from the data provider Retrosheet [24]. For each at-bat, the data has various attributes,
such as the pitcher, the batter, the score of the baseball game, and the runner positions. We
also gather, separately for each pitcher and batter, various aggregate statistics from the 2017
season, e.g., their batting average, strike out percentage, single percentage, as well as their
handedness. We perform a temporal 60/20/20 split of the season into a training, validation,
and test sample. None of the states are missing. Unlike the volume example in Sect. 5 where
we had a single state sequence (i.e., K = 1), in this example we have K = 43627 state
sequences, each of which constitutes a half-inning of baseball.
State. We consider as the discrete state the number of outs (0, 1, or 2) and whether or not
there is a runner on first, second, and third base during an at-bat, expressed as three values
in {0, 1}. We also add a state for inning over, which is effectively a three-out state. Thus,
the total number of states is n = 3 × 2 × 2 × 2 + 1 = 25. Of course, the inning over state
is absorbing. Due to the rules of baseball, only some of the state transitions are possible.
For example, outs cannot decrease, and the total number of runners on base cannot increase
by more than one. We map out 294 of the n2 = 625 transitions that are possible according
to the rules of baseball and mask the transition matrix accordingly. (Only 279 of these 294
transitions occur in the 2018 season.) For future reference, the state (a, b, c, d)means a outs,
b = 0 means no runner on first base, and b = 1 means a runner is on first base (c and d
have the same meaning as b, but for second and third base). The inning over state is denoted
(3, 0, 0, 0).
Features.We consider as features the one-hot version of the current run difference (clipped
to [−3, 3]), whether the batting team is home or away, the one-hot inning, the one-hot lineup
position, the handedness of the pitcher and batter, including whether they have the same
dominant hand, and all of the aggregate at-bat result statistics described above. The total
number of features is m = 64. With these features, our logistic transition model is additive
in the pitcher and batter features, i.e., there is no interaction between the pitcher and better
features, except for their handedness. This is a reasonable assumption for our simple example,
but in practice one would probably need to add pitcher-batter interactions.We standardize the

123

Journal of Global Optimization

Fig. 7 A heatmap of the
empirical transition matrix

features so that they have zero mean and unit standard deviation on the training dataset. Since
some of the pitchers and batters did not play in the 2017 season, we set their features to NaN,
and ignore transitions with any feature vectors that contain NaNs in fitting and evaulating all
of our models.
Empirical model. We begin by considering the empirical transition matrix between the 25
states, which is plotted in Fig. 7 for the training set. All of these transitions are one of the
294 transitions we mapped out as possible. The first 8 states correspond to 0 outs, the next
8 correspond to 1 out, and the final 8 (except the last) correspond to 2 outs. Thus, it makes
sense that the strictly lower triangular (block) entries are all zero, since outs cannot decrease.
Also, there are only a few transitions from 0 outs to 2 outs, which can only happen when
there is at least one runner on base. The last row corresponds to the (3, 0, 0, 0) state, which is
absorbing. The transition matrix is auditable; we can easily inspect it to make sure it makes
sense. For example, the most probable transition from (0, 0, 0, 0) is to (1, 0, 0, 0), which
means the batter got out. The probability of this transition is 68.3%, meaning the probability
a batter does not get out with the bases empty is 31.5%, which corresponds almost exactly
with the overall published league on base percentage (OBP) of 31.8%. As another example,
the second most probable transition for (1, 0, 0, 1) is to (2, 0, 0, 0), which means the runner
on third scored, but the batter got out, most likely indicating a sacrifice fly or similar play.
This transition occurs with probability 20%.
Models.We fit four models, which are described in order below.

• Empirical. The empirical transition matrix.
• Feature-dependent with sum of squares regularization. A feature-dependent Markov

chain model with sum of square regularization, tuned using the validation sample.
• Feature-dependent with column norm regularization.A feature-dependent Markov chain

model with column norm regularization, chosen so that 9 of the 64 features were used.
(These features are listed below.)

• Feature-dependent subset features. A feature-dependent Markov chain model using the
9 features selected by the solution to the column norm problem, with sum of squares
regularization, tuned using the validation sample.

Results. In Table 3 we give the average test log-likelihood of the four models. The feature-
dependent sum of squares model and feature-dependent subset features model were tied
for the best test log-likelihood. However, the latter model uses significantly fewer features

123

Journal of Global Optimization

Table 3 The first row gives the log-likelihood of the baseline empirical model on train, validation, and test
samples. The remaning three rows give the increase in log-likelihood over the baseline model

Predictor Train Validation Test

Empirical baseline −147840.7744 −15071.1119 −14487.9775

Feature-dependent sum of squares 2383.98 58.11 75.62

Feature-dependent column norm 251.90 16.91 24.82

Feature-dependent subset features 893.40 60.14 74.48

(9 versus 64), and so might be preferred. Also, it is worth noting that when we re-fit the
model with the features that had nonzero coefficients in the column norm model, the test
log-likelihood significantly improved.
Interpretations. Since the features are standardized, we can look at the model coefficients
and find which features have the biggest effect on certain transitions. Consider the transition
from (0, 0, 0, 0) to (0, 0, 0, 0), which occurs when the batter gets a home run. Some of the
features that have the most positive effect on this transition are whether the batter is in the
fourth lineup spot, the fraction of the time that the pitcher gives up home runs, RBIs, and
walks. The features that affect this transition the least are whether the batter is in the eighth or
ninth lineup spot, whether the game is in extra innings, and the fraction of the time a pitcher
gives up triples.
Feature selection. In the column norm-regularizedmodel, the selected featureswerewhether
the batter is first or last in the lineup, whether the batting team is down by 3 or more runs, the
fraction of the time a batter hits a triple, whether it is the ninth inning, and the fraction of the
time the pitcher gets a home run, walk, and strike. At least qualitatively, these all seem like
very important features for predicting the probability of different transitions between game
states.
Fictitious game simulations. As a further check on our models, we can run full baseball
game simulations and check the results. Here we perform fictitious simulation, where we
always have the same pitcher and the same batter for each respective team for the entire
game. Of course, the very same model could be used for simulating a real game, including
the real batter order, pitching substitutions, and so on, but for simplicity we fix the pitcher
and batter. We consider a game between the SF Giants and the Seattle Mariners, played at
the Giants’ stadium. For the Mariners, we have Marco Gonzales pitching and David Frietas
batting. For the Giants, we have Tyson Blach pitching and Buster Posey batting. We ran ten
thousand full game simulations using the feature-dependent with sum of squares model, and
calculated the final runs scored by each team in both simulations. The win probability under
this model for the Giants was 54.3%, and on average they led by 0.25 runs at the end of the
game. (If we ran the game simulations using the constant model, the win probability would
be 50%, since the model is symmetric and has identical run distributions for each side.) The
histogram of the Giants’ runs minus the Mariners’ runs over all the simulations is plotted in
Fig. 8.

Even though this simulation with a fixed pitcher and batter for each team is unrealistic,
it is still interesting and informative. For example, if we switch these to Felix Hernandez
pitching and Mitchell Haniger batting for the Mariners, and Johnny Cueto pitching and
Gorkys Hernandez batting for the Giants, the Giants win probability drops to 38.51%, the
average final lead is −0.937, and the lead histogram is shown in Fig. 9.

123

Journal of Global Optimization

Fig. 8 A histogram of the Giants’ lead over the Mariners over the ten thousand game simulations, with Marco
Gonzales pitching and David Freitas batting for the Mariners, and Tyson Blach pitching and Buster Posey
batting for the Giants

Fig. 9 A histogram of the Giants’ lead over the Mariners over the ten thousand game simulations, with Felix
Hernandez pitching and Mitchell Haniger batting for the Mariners, and Johnny Cueto pitching and Gorkys
Hernandez batting for the Giants

7 Previous work

Markov chains.The topic ofMarkov chains or processes has a long history, withmany books
written on the subject, e.g., [15, 19, 25, 28]. Markov chains and theMarkov property are both
fundamental to stochastic control [6]. The Markov chain was also the basis for PageRank,
which formed the initial version of the search website Google [20].
Hidden Markov models. Hidden Markov models (HMMs) are Markov chains where the
state is unobservable, and instead, evaluations of a random function of the state are observed
[22]. As mentioned above, the forward-backward algorithm that is commonly used to fit
parameters in a HMM is very similar in nature to the E-step of the EM algorithm described
in Sect. 3. The authors are unaware of HMM variants where the hidden state transition
probabilities depend on covariates.
Hazard models. Many other widely used models are specific instances of the model we
described in this paper. One example is the proportional hazards model from statistics. In

123

Journal of Global Optimization

a proportional hazards model, there is a Markov chain with two states: the hazard has not
yet happened, and the hazard has happened, which is an absorbing state. The discrete-time
version of the Cox proportional hazards model [9], which models the hazard likelihood using
a logistic function, is exactly our model. The original application of the Cox proportional
hazards model was to feature-dependent life tables [9]; since then it has been applied to many
areas, including modeling bank failure [17], system reliability [18], and terrorism assessment
[29].
EM for fitting Markov chains. Fitting a Markov chain to data is often performed by simply
computing the empirical transition matrix. However, when there is missing data, this simple
method has to discard any state pairs where one or more of the states are missing. As a
solution for this issue, in 1995, Sherlaw derived the EM algorithm for the problem of fitting a
Markov chain transition matrix to data with missing entries [26]. The algorithm he proposed
is identical to the one we describe here when there are no features, i.e., m = 0. Indeed, the
constant EM model described in Sect. 5 fits the model in the exact same way as [26]. We
note that the basic EM algorithm described by Sherlaw has been extended to more complex
patterns of incompleteness, e.g., the state being known to be in a subset of the possible states
[10]. The methods we describe in this paper can be extended in similar ways.
Feature-dependent Markov chains. The idea of making the transition matrix of a Markov
chain depend on external features is by no means new. In 1976, Boyle proposed using linear
discriminant analysis (LDA) for parametrizing the transition matrix [8]. Shortly after, in
1979, Korn and Whittemore proposed a logistic model for the transition probabilities in a
two-state (binary) Markov chain, and applied it to panel data related to air pollution [16]. The
incorporationof covariates in a continuous-timeMarkovmodelwas introducedbyKalbfleisch
and Lawless in [14].

Since then, feature-dependent Markov chains have found much use in medical decision
making [5, 27], among other applications. One prototypical use is to make the probability of
death or the progression of particular ailments depend on age. However, the effect of these
features on the transition probabilities are often derived or estimated by hand. This is hard
to do with more than a few features or states. Since then, practitioners have developed what
are called cohort state-transition models or Markov cohort models, which effectively fit a
separate logistic regression model for each row of the transition matrix [1]. These models
have been implemented, without support for missing data, as part of the R package hesim
[13].
Contribution. Given the vast extent of the previous work, we discuss our contribution to
the literature here. Our work can be viewed as a applying the Markov chain EM algorithm
of Sherlaw [26] to the case where the transition matrix depends on features [16]. We give
a succinct and comprehensive description of the problem, its properties, and an EM-based
solution method, paired with an efficient and widely available implementation. We apply the
methods to predicting changes in stock volume and baseball game state transitions, and find
the method, in our experiments, to work well.

Acknowledgements The authors gratefully acknowledge conversations and discussions about some of the
material in this paper with Trevor Hastie, Emmanuel Candes, Scott Harris, and Paul Bien.

References

1. Alarid-Escudero, F., Krijkamp, E., Enns, E., Yang, A., Hunink, M., Pechlivanoglou, P., Jalal, H.: Cohort
state-transition models in R: A tutorial. arXiv preprint arXiv:2001.07824, (2020)

123

http://arxiv.org/abs/2001.07824

Journal of Global Optimization

2. Allison, P.: Missing Data. Sage Publications, New York (2001)
3. Barratt, S., Dong, Y., Boyd, S.: Low rank forecasting. arXiv preprint arXiv:2101.12414, (2021)
4. Baum, L.: An inequality and associated maximization technique in statistical estimation for probabilistic

functions of Markov processes. Inequalities 3(1), 1–8 (1972)
5. Beck, R., Pauker, S.: The Markov process in medical prognosis. Med. Decis. Making 3(4), 419–458

(1983)
6. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)
7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
8. Boyle, B.: Estimation of feature-dependent Markov process transition probability matrices. Inf. Control

32(4), 379–384 (1976)
9. Cox, D.: Regression models and life-tables. J. Roy. Stat. Soc.: Ser. B (Methodol). 34(2), 187–202 (1972)

10. Deltour, I., Richardson, S., Le Hesran, J.-Y.: Stochastic algorithms for Markov models estimation with
intermittent missing data. Biometrics 55(2), 565–573 (1999)

11. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J.
Roy. Stat. Soc.: Ser. B (Methodol). 39(1), 1–22 (1977)

12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements Of Statistical Learning: Data Mining, Inference,
And Prediction. Springer Science & Business Media, Germany (2009)

13. Incerti, D., Jansen, J.: hesim: Health Economic Simulation Modeling and Decision Analysis, (2021). R
package version 0.5.0

14. Kalbfleisch, J., Lawless, J.: The analysis of panel data under a Markov assumption. J. Am. Stat. Assoc.
80(392), 863–871 (1985)

15. Kemeny, J., Snell, L.: Markov Chains, vol. 6. Springer, New York (1976)
16. Korn, E., Whittemore, A.: Methods for analyzing panel studies of acute health effects of air pollution.

Biometrics, 795–802, (1979)
17. Lane, W., Looney, S., Wansley, J.: An application of the Cox proportional hazards model to bank failure.

Journal of Banking & Finance 10(4), 511–531 (1986)
18. Makis, V., Jardine, A.: Optimal replacement in the proportional hazards model. INFOR: Inf. Sys. Oper.

Res. 30(1), 172–183 (1992)
19. Norris, J.: Markov Chains. Cambridge University Press, Cambridge (1998)
20. Page, L., Brin, S., Motwani, R., Winograd, T.: The Pagerank Citation Ranking: Bringing Order To The

Web. Technical report, Stanford InfoLab, Netherlands (1999)
21. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,

Antiga, L., et al.: PyTorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems, pages 8024–8035, (2019)

22. Rabiner, L., Juang, B.: An introduction to hidden Markov models. IEEE ASSP Mag. 3(1), 4–16 (1986)
23. Recht, B., Fazel, M., Parrilo, P.: Guaranteed minimum-rank solutions of linear matrix equations via

nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)
24. Inc. Retrosheet. Retrosheet. https://retrosheet.org/
25. Revuz, D.: Markov Chains. Elsevier, Amsterdam (2008)
26. Sherlaw-Johnson, C., Gallivan, S., Burridge, J.: Estimating aMarkov transition matrix from observational

data. J. Oper. Res. Soc. 46(3), 405–410 (1995)
27. Sonnenberg, F., Beck, R.: Markov models in medical decision making: a practical guide. Med. Decis.

Making 13(4), 322–338 (1993)
28. Walrand, J.: Probability In Electrical Engineering And Computer Science: AnApplication-driven Course.

Quorum Books, Santa Barbara, California (2014)
29. Woo, G.: Quantitative terrorism risk assessment. The Journal of Risk Finance, (2002)
30. Wu, Jeff: On the convergence properties of the EM algorithm. The Annals of Statistics, pages 95–103,

(1983)
31. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc.:

Ser. B (Statistical Methodology) 68(1), 49–67 (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/2101.12414
https://retrosheet.org/

	Fitting feature-dependent Markov chains
	Abstract
	1 Introduction
	2 Fitting without missing data
	2.1 Log-likelihood
	2.2 Fitting
	2.3 Regularizers
	2.4 Judging a predictor

	3 Fitting with missing data
	3.1 Log-likelihood with missing data
	3.2 Expectation-maximization

	4 Implementation
	5 Example: Trading volume
	5.1 Fitting without missing data
	5.2 Fitting with missing data
	5.3 Interpretations

	6 Example: Baseball
	7 Previous work
	Acknowledgements
	References

