gpposy
A Matlab Solver for Geometric Programs

in Posynomial Form

Kwangmoo Koh Seungjean Kim
denebl@stanford.edu sjkim@stanford.edu
Almir Mutapcic Stephen Boyd
almirm@stanford.edu boyd@stanford.edu
May 22, 2006

1 Introduction

gpposy solves an optimization problem of the form

) () (0)
minimize ZKO b(o) TEL ok Lo ke
() (©)
subject to Zkllb(Z a’“ T2 ot <1, i=1,...,m, (1)
hizd*x 5“2- cxdn =1, i=1,...,p,
[<z j u,
where the optimization variable is the vector x = (z1,...,2,) € R}. The problem data

are a,(g?,gij € R, b,(f),hi € Ry, and [,u € R’}. Here = means componentwise inequality
between vectors. This problem is called a geometric program in posynomial form. For more

information about geometric programming, see [BV04, BKVH].

2 Calling sequences

The complete calling sequence of gpposy is

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h,1,u,quiet);

Input arguments represent the problem data of the problem (1). Output arguments are the

optimal point (if feasible), sensitivity information (if feasible) and the solution status.

Input arguments

e A: matrix with n columns and)", K; rows that specifies the exponents of the objective
and equality constraints, i.e.,

A(0) () (%)

yp 0 Qip
: S AG = SR e RE>™ i=0,....,m.
Al Aol
A can be in sparse format.

e b: vector of length 77" | K; that specifies the coefficients of the objective and inequality
constraints, i.e.,
b by
b= : ;b9 = : GRfi, 1=0,...,m.
b(m) b

.
.
=

K;
All elements b,(f) must be positive.

e szs: vector of length m + 1 that specifies the number of terms in each objective and
inequality constraints, i.e., (Ko, ..., Kp).

e G: matrix with n columns and p rows, that specifies the exponents of equality con-
straints, t.e.,

g1 - Gin
G=| : .. | eRMF
gpl Tt gpn

G can be in sparse format.

e h: p-vector that contains the coefficients of equality constraints, i.e.,

ha
h=1] : | eRL.
h’p

All elements h;, must be positive.

e 1: n-vector that specifies lower bounds on z. If not given, it will be set to the default
lower bounds (10719 ... 10719%). All elements /; must be positive.

e u: n-vector that specifies upper bounds on x. If not given, it will be set to the default
upper bounds (100, ... 10'). All elements u; must be positive.

e quiet: boolean. Suppresses print messages during execution if true. The default
value is false.

Output arguments

e x: n-vector. x is the optimal point of the problem if the problem is feasible, and x is
the last primal iterate of phase I if the problem is infeasible.

e status: string; possible values are ’Solved’, ’Infeasible’ and ’Failed’.

e lambda: vector of length m + 2n; the optimal sensitivity vector (see [BKVH, §3.3])
associated with inequality constraints if the problem is feasible. The first m elements,
lambda(1:m), are optimal sensitivities of the m inequality constraints, the next n
elements, lambda(m+1:m+n), are those of the lowerbound constraints (I < x), and
the last n elements, lambda(m+n:m+2*n), are those of the upperbound constraints
(x < w). If the problem is feasible, lambda is a certificate of infeasibility (see [BKVH,
§5.8.1,611.4.3]).

e nu: p-vector; the optimal sensitivity vector (see [BKVH, §3.3]) associated with equality
constraints (Gx + h = 0) if the problem is feasible. If infeasible, nu is a certificate of
infeasibility (see [BKVH, §5.8.1,§11.4.3]).

Other calling sequences

Other calling sequences supported by gpposy are:

>> [x,status,lambda,nu] = gpposy(A,b,szs);

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h);

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h,1,u);

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h,1,u,quiet);

>> [x,status,lambda,nu] = gpposy(A,b,szs,[],[],1,u);

>> [x,status,lambda,nu] = gpposy(A,b,szs,[],[],1,u,quiet);
>> [x,status,lambda,nu] = gpposy(A,b,szs,[],[],[],[],quiet);

Caveats

e The equality constraint matrix, G, must be full rank.
e [f your problem is large and sparse, be sure that A and G are in sparse format.

e Equality constraints should be explicitly specified as Gx+h = 0. You cannot represent
an equality constraint as a pair of opposing inequality constraints.

3 Example

Consider the problem

minimize xflscgl/Q 2142, 3x1x3 + 4x 12973

subject to (1/3)x7? _2 + (4/3)y gl <1,
0.1z + 0.2x2 4+ 0.3z3 < 1,
(1/2)z129 =1,

with variables x1, zo and z3. This problem has the form (1) with

-1 —0.5 —1 5 _o 100
A= 1 0 1|, A(l):[_o 05 _01], A =10 10|,
11 1 ' 00 1
1 0.1
b0 = | 2.3 |, b(”:[i/glj b =102,
4 /3 0.3

G=[110], h=05
The Matlab code for solving this problem is as follows:

% Matlab script that solves the above problem

>> AO

[-1 -0.5 -1
1 0 1
1 1 1
> A =[-2 -2 0 ;...
0 0.5 -11;
0
0
1
2

S
s
15

>> A2 = [1 0

PRI

0 1 D

0 0 1;
> A = [A0; Al; A2];
> b0 =[1; 2.3; 4 7;
> bl = [1/3; 4/3 1;
> b2 =[0.1; 0.2; 0.3 1;
>b = [b0; bl; b2 1];
> ¢ =10 1 1 01;
>h =1[0.51;

>> szs = [size(A0,1); size(Al,1); size(A2,1) 1; %i.e., [3; 2; 3]
>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h);

4

After executing the code, you can see the result by typing x in Matlab.

>> X

3.4783
0.5750
1.1030

References

[BKVH] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on geometric
programming. To appear in Optimization and Engineering, 2005. Available at
www.stanford.edu/~boyd/gp_tutorial .html.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004. Available at www.stanford.edu/~boyd/cvxbook.html.

