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1 Introduction

gpposy solves an optimization problem of the form
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where the optimization variable is the vector x = (z1,...,2,) € R}. The problem data

are a,(g?,gij € R, b,(f),hi € Ry, and [,u € R’}. Here = means componentwise inequality
between vectors. This problem is called a geometric program in posynomial form. For more

information about geometric programming, see [BV04, BKVH].

2 Calling sequences

The complete calling sequence of gpposy is

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h,1,u,quiet);

Input arguments represent the problem data of the problem (1). Output arguments are the

optimal point (if feasible), sensitivity information (if feasible) and the solution status.



Input arguments

e A: matrix with n columns and )", K; rows that specifies the exponents of the objective
and equality constraints, i.e.,
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A can be in sparse format.

e b: vector of length 77" | K; that specifies the coefficients of the objective and inequality
constraints, i.e.,
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All elements b,(f) must be positive.

e szs: vector of length m + 1 that specifies the number of terms in each objective and
inequality constraints, i.e., (Ko, ..., Kp).

e G: matrix with n columns and p rows, that specifies the exponents of equality con-
straints, t.e.,
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G can be in sparse format.

e h: p-vector that contains the coefficients of equality constraints, i.e.,
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All elements h;, must be positive.

e 1: n-vector that specifies lower bounds on z. If not given, it will be set to the default
lower bounds (10719 ... 10719%). All elements /; must be positive.

e u: n-vector that specifies upper bounds on x. If not given, it will be set to the default
upper bounds (100, ... 10'). All elements u; must be positive.

e quiet: boolean. Suppresses print messages during execution if true. The default
value is false.



Output arguments

e x: n-vector. x is the optimal point of the problem if the problem is feasible, and x is
the last primal iterate of phase I if the problem is infeasible.

e status: string; possible values are ’Solved’, ’Infeasible’ and ’Failed’.

e lambda: vector of length m + 2n; the optimal sensitivity vector (see [BKVH, §3.3])
associated with inequality constraints if the problem is feasible. The first m elements,
lambda(1:m), are optimal sensitivities of the m inequality constraints, the next n
elements, lambda(m+1:m+n), are those of the lowerbound constraints (I < x), and
the last n elements, lambda(m+n:m+2*n), are those of the upperbound constraints
(x < w). If the problem is feasible, lambda is a certificate of infeasibility (see [BKVH,
§5.8.1,611.4.3]).

e nu: p-vector; the optimal sensitivity vector (see [BKVH, §3.3]) associated with equality
constraints (Gx + h = 0) if the problem is feasible. If infeasible, nu is a certificate of
infeasibility (see [BKVH, §5.8.1,§11.4.3]).

Other calling sequences

Other calling sequences supported by gpposy are:

>> [x,status,lambda,nu] = gpposy(A,b,szs);

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h);

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h,1,u);

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h,1,u,quiet);

>> [x,status,lambda,nu] = gpposy(A,b,szs,[],[],1,u);

>> [x,status,lambda,nu] = gpposy(A,b,szs,[],[],1,u,quiet);
>> [x,status,lambda,nu] = gpposy(A,b,szs,[],[],[],[],quiet);

Caveats

e The equality constraint matrix, G, must be full rank.
e [f your problem is large and sparse, be sure that A and G are in sparse format.

e Equality constraints should be explicitly specified as Gx+h = 0. You cannot represent
an equality constraint as a pair of opposing inequality constraints.



3 Example

Consider the problem

minimize xflscgl/Q 2142, 3x1x3 + 4x 12973

subject to (1/3)x7? _2 + (4/3)y gl <1,
0.1z + 0.2x2 4+ 0.3z3 < 1,
(1/2)z129 =1,

with variables x1, zo and z3. This problem has the form (1) with
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G=[110], h=05
The Matlab code for solving this problem is as follows:

% Matlab script that solves the above problem

>> AO

[ -1 -0.5 -1
1 0 1
1 1 1
> A =[ -2 -2 0 ;...
0 0.5 -11;
0
0
1
2
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>> A2 = [ 1 0

PRI

0 1 D

0 0 1;
> A = [ A0; Al; A2 ];
> b0 =[ 1; 2.3; 4 7;
> bl = [ 1/3; 4/3 1;
> b2 =[0.1; 0.2; 0.3 1;
>b = [ b0; bl; b2 1];
> ¢ =10 1 1 01;
>h =1[0.51;

>> szs = [ size(A0,1); size(Al,1); size(A2,1) 1; %i.e., [ 3; 2; 3]
>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h);
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After executing the code, you can see the result by typing x in Matlab.

>> X

3.4783
0.5750
1.1030
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