
gpposy

A Matlab Solver for Geometric Programs

in Posynomial Form

Kwangmoo Koh
deneb1@stanford.edu

Seungjean Kim
sjkim@stanford.edu

Almir Mutapcic
almirm@stanford.edu

Stephen Boyd
boyd@stanford.edu

May 22, 2006

1 Introduction

gpposy solves an optimization problem of the form

minimize
∑K0

k=1 b
(0)
k x

a
(0)
k1

1 x
a
(0)
k2

2 · · · x
a
(0)
kn

n

subject to
∑Ki

k=1 b
(i)
k x

a
(i)
k1

1 x
a
(i)
k2

2 · · · x
a
(i)
kn

n ≤ 1, i = 1, . . . ,m,
hix

gi1
1 xgi2

2 · · · xgin

n = 1, i = 1, . . . , p,
l � x � u,

(1)

where the optimization variable is the vector x = (x1, . . . , xn) ∈ Rn
+. The problem data

are a
(i)
kj , gij ∈ R, b

(i)
k , hi ∈ R+, and l, u ∈ Rn

+. Here � means componentwise inequality
between vectors. This problem is called a geometric program in posynomial form. For more
information about geometric programming, see [BV04, BKVH].

2 Calling sequences

The complete calling sequence of gpposy is

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h,l,u,quiet);

Input arguments represent the problem data of the problem (1). Output arguments are the
optimal point (if feasible), sensitivity information (if feasible) and the solution status.

1

Input arguments

• A: matrix with n columns and
∑m

i=0 Ki rows that specifies the exponents of the objective
and equality constraints, i.e.,

A =









A(0)

...
A(m)









, A(i) =









a
(i)
11 · · · a

(i)
1n

...
. . .

...

a
(i)
Ki1

· · · a
(i)
Kin









∈ RKi×n, i = 0, . . . ,m.

A can be in sparse format.

• b: vector of length
∑m

i=0 Ki that specifies the coefficients of the objective and inequality
constraints, i.e.,

b =









b(0)

...
b(m)









, b(i) =









b
(i)
1
...

b
(i)
Ki









∈ RKi

+ , i = 0, . . . ,m.

All elements b
(i)
k must be positive.

• szs: vector of length m + 1 that specifies the number of terms in each objective and
inequality constraints, i.e., (K0, . . . , Km).

• G: matrix with n columns and p rows, that specifies the exponents of equality con-
straints, i.e.,

G =









g11 · · · g1n
...

. . .
...

gp1 · · · gpn









∈ Rp×n.

G can be in sparse format.

• h: p-vector that contains the coefficients of equality constraints, i.e.,

h =









h1
...

hp









∈ R
p
+.

All elements hk must be positive.

• l: n-vector that specifies lower bounds on x. If not given, it will be set to the default
lower bounds (10−100, . . . , 10−100). All elements li must be positive.

• u: n-vector that specifies upper bounds on x. If not given, it will be set to the default
upper bounds (10100, . . . , 10100). All elements ui must be positive.

• quiet: boolean. Suppresses print messages during execution if true. The default
value is false.

2

Output arguments

• x: n-vector. x is the optimal point of the problem if the problem is feasible, and x is
the last primal iterate of phase I if the problem is infeasible.

• status: string; possible values are ’Solved’, ’Infeasible’ and ’Failed’.

• lambda: vector of length m + 2n; the optimal sensitivity vector (see [BKVH, §3.3])
associated with inequality constraints if the problem is feasible. The first m elements,
lambda(1:m), are optimal sensitivities of the m inequality constraints, the next n
elements, lambda(m+1:m+n), are those of the lowerbound constraints (l � x), and
the last n elements, lambda(m+n:m+2*n), are those of the upperbound constraints
(x � u). If the problem is feasible, lambda is a certificate of infeasibility (see [BKVH,
§5.8.1,§11.4.3]).

• nu: p-vector; the optimal sensitivity vector (see [BKVH, §3.3]) associated with equality
constraints (Gx + h = 0) if the problem is feasible. If infeasible, nu is a certificate of
infeasibility (see [BKVH, §5.8.1,§11.4.3]).

Other calling sequences

Other calling sequences supported by gpposy are:

>> [x,status,lambda,nu] = gpposy(A,b,szs);

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h);

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h,l,u);

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h,l,u,quiet);

>> [x,status,lambda,nu] = gpposy(A,b,szs,[],[],l,u);

>> [x,status,lambda,nu] = gpposy(A,b,szs,[],[],l,u,quiet);

>> [x,status,lambda,nu] = gpposy(A,b,szs,[],[],[],[],quiet);

Caveats

• The equality constraint matrix, G, must be full rank.

• If your problem is large and sparse, be sure that A and G are in sparse format.

• Equality constraints should be explicitly specified as Gx+h = 0. You cannot represent
an equality constraint as a pair of opposing inequality constraints.

3

3 Example

Consider the problem

minimize x−1
1 x

−1/2
2 x−1

3 + 2.3x1x3 + 4x1x2x3

subject to (1/3)x−2
1 x−2

2 + (4/3)x
1/2
2 x−1

3 ≤ 1,
0.1x1 + 0.2x2 + 0.3x3 ≤ 1,
(1/2)x1x2 = 1,

with variables x1, x2 and x3. This problem has the form (1) with

A(0) =







−1 −0.5 −1
1 0 1
1 1 1





 , A(1) =

[

−2 −2 0
0 0.5 −1

]

, A(2) =







1 0 0
0 1 0
0 0 1





 ,

b(0) =







1
2.3
4





 , b(1) =

[

1/3
4/3

]

, b(2) =







0.1
0.2
0.3





 ,

G =
[

1 1 0
]

, h = 0.5.

The Matlab code for solving this problem is as follows:

% Matlab script that solves the above problem

>> A0 = [-1 -0.5 -1 ;...

1 0 1 ;...

1 1 1];

>> A1 = [-2 -2 0 ;...

0 0.5 -1];

>> A2 = [1 0 0 ;...

0 1 0 ;...

0 0 1];

>> A = [A0; A1; A2];

>> b0 = [1; 2.3; 4];

>> b1 = [1/3; 4/3];

>> b2 = [0.1; 0.2; 0.3];

>> b = [b0; b1; b2];

>> G = [1 1 0];

>> h = [0.5];

>> szs = [size(A0,1); size(A1,1); size(A2,1)]; %i.e., [3; 2; 3]

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h);

4

After executing the code, you can see the result by typing x in Matlab.

>> x

ans =

3.4783

0.5750

1.1030

References

[BKVH] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on geometric
programming. To appear in Optimization and Engineering, 2005. Available at
www.stanford.edu/∼boyd/gp tutorial.html.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004. Available at www.stanford.edu/∼boyd/cvxbook.html.

5

