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1 Introduction

gpposy solves an optimization problem of the form
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where the optimization variable is the vector x = (x1, . . . , xn) ∈ Rn
+. The problem data

are a
(i)
kj , gij ∈ R, b

(i)
k , hi ∈ R+, and l, u ∈ Rn

+. Here � means componentwise inequality
between vectors. This problem is called a geometric program in posynomial form. For more
information about geometric programming, see [BV04, BKVH].

2 Calling sequences

The complete calling sequence of gpposy is

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h,l,u,quiet);

Input arguments represent the problem data of the problem (1). Output arguments are the
optimal point (if feasible), sensitivity information (if feasible) and the solution status.
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Input arguments

• A: matrix with n columns and
∑m

i=0 Ki rows that specifies the exponents of the objective
and equality constraints, i.e.,
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A can be in sparse format.

• b: vector of length
∑m

i=0 Ki that specifies the coefficients of the objective and inequality
constraints, i.e.,
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All elements b
(i)
k must be positive.

• szs: vector of length m + 1 that specifies the number of terms in each objective and
inequality constraints, i.e., (K0, . . . , Km).

• G: matrix with n columns and p rows, that specifies the exponents of equality con-
straints, i.e.,

G =
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G can be in sparse format.

• h: p-vector that contains the coefficients of equality constraints, i.e.,

h =
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All elements hk must be positive.

• l: n-vector that specifies lower bounds on x. If not given, it will be set to the default
lower bounds (10−100, . . . , 10−100). All elements li must be positive.

• u: n-vector that specifies upper bounds on x. If not given, it will be set to the default
upper bounds (10100, . . . , 10100). All elements ui must be positive.

• quiet: boolean. Suppresses print messages during execution if true. The default
value is false.
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Output arguments

• x: n-vector. x is the optimal point of the problem if the problem is feasible, and x is
the last primal iterate of phase I if the problem is infeasible.

• status: string; possible values are ’Solved’, ’Infeasible’ and ’Failed’.

• lambda: vector of length m + 2n; the optimal sensitivity vector (see [BKVH, §3.3])
associated with inequality constraints if the problem is feasible. The first m elements,
lambda(1:m), are optimal sensitivities of the m inequality constraints, the next n
elements, lambda(m+1:m+n), are those of the lowerbound constraints (l � x), and
the last n elements, lambda(m+n:m+2*n), are those of the upperbound constraints
(x � u). If the problem is feasible, lambda is a certificate of infeasibility (see [BKVH,
§5.8.1,§11.4.3]).

• nu: p-vector; the optimal sensitivity vector (see [BKVH, §3.3]) associated with equality
constraints (Gx + h = 0) if the problem is feasible. If infeasible, nu is a certificate of
infeasibility (see [BKVH, §5.8.1,§11.4.3]).

Other calling sequences

Other calling sequences supported by gpposy are:

>> [x,status,lambda,nu] = gpposy(A,b,szs);

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h);

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h,l,u);

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h,l,u,quiet);

>> [x,status,lambda,nu] = gpposy(A,b,szs,[],[],l,u);

>> [x,status,lambda,nu] = gpposy(A,b,szs,[],[],l,u,quiet);

>> [x,status,lambda,nu] = gpposy(A,b,szs,[],[],[],[],quiet);

Caveats

• The equality constraint matrix, G, must be full rank.

• If your problem is large and sparse, be sure that A and G are in sparse format.

• Equality constraints should be explicitly specified as Gx+h = 0. You cannot represent
an equality constraint as a pair of opposing inequality constraints.
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3 Example

Consider the problem

minimize x−1
1 x

−1/2
2 x−1

3 + 2.3x1x3 + 4x1x2x3

subject to (1/3)x−2
1 x−2

2 + (4/3)x
1/2
2 x−1

3 ≤ 1,
0.1x1 + 0.2x2 + 0.3x3 ≤ 1,
(1/2)x1x2 = 1,

with variables x1, x2 and x3. This problem has the form (1) with
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, h = 0.5.

The Matlab code for solving this problem is as follows:

% Matlab script that solves the above problem

>> A0 = [ -1 -0.5 -1 ;...

1 0 1 ;...

1 1 1 ];

>> A1 = [ -2 -2 0 ;...

0 0.5 -1 ];

>> A2 = [ 1 0 0 ;...

0 1 0 ;...

0 0 1 ];

>> A = [ A0; A1; A2 ];

>> b0 = [ 1; 2.3; 4 ];

>> b1 = [ 1/3; 4/3 ];

>> b2 = [ 0.1; 0.2; 0.3 ];

>> b = [ b0; b1; b2 ];

>> G = [ 1 1 0 ];

>> h = [ 0.5 ];

>> szs = [ size(A0,1); size(A1,1); size(A2,1) ]; %i.e., [ 3; 2; 3 ]

>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h);
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After executing the code, you can see the result by typing x in Matlab.

>> x

ans =

3.4783

0.5750

1.1030
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