
THE MORSE INDEX OF A MINIMAL SURFACE

OTIS CHODOSH

These are an my notes for a minicourse given January 2024 at the Fifth

Taiwan International Conference on Geometry at National Taiwan University.

Many thanks to the organizers and attendees for making this possible. Further

references concerning the topics discussed here include [Sim83, HK97, CM11,

Whi13, Cho21].

1. First and second variation of area

Consider1 Mn ⊂ Rn+1 a minimal hypersurface. We’ll always assume that M

is two-sided, namely there’s a continuous choice of unit normal (often called the

Gauss map) ν : M → Sn ⊂ Rn+1. Recall that the (scalar) second fundamental

form of M is

A(X,Y) = ⟨DXν,Y⟩

and the mean curvature is H = trA. To say that M is a minimal hypersurface

means
d

dt

∣∣∣
t=0

area(Mt) = 0

for any compactly supported variation t 7→ Mt; by the “first variation of area”

this is equivalent to vanishing of the mean curvature: H = 0.

If the (smooth compactly supported) variation t 7→ Mt has initial velocity

φν then

(1.1)
d2

dt2

∣∣∣
t=0

area(Mt) =

∫
M

|∇φ|2 − |A|2φ2 := QM(φ).

Geometrically, QM(φ) encodes the second-order (in-)stability properties of M .

These notes are concerned with the Morse index of M as defined by

(1.2) index(M) := sup{dimV : V ⊂ C∞
c (M),QM < 0 on V \ {0}}

Date: January 14, 2024.
1The majority of our discussion extends in a straightforward manner to M immersed; we’ll
comment on this more later.

1



2 OTIS CHODOSH

i.e., the maximal dimension of a space of variations destabilizing M to second

order.

Remark 1.1. If Rn+1 is replaced by a Riemannian manifold (Xn+1, g) then

the second variation is similar: QM(φ) =
∫
M
|∇φ|2 − (|A|2 +RicX(ν, ν))φ

2.

2. Qualitative properties of the Morse index

ConsiderMn ⊂ Rn+1 complete two-sided minimal hypersurface (we’ll always

assume M is connected). We say that M has finite index if index(M) < ∞ as

defined in (1.2) and finite total curvature if |A| ∈ Ln(M). The basic qualitative

result concerning the index is as follows:

Theorem 2.1. Let n+1 ∈ {3, 4, 5}. A complete two-sided minimal hypersur-

face Mn ⊂ Rn+1 has finite index if and only if it has finite total curvature.

For M2 ⊂ R3 this was proven independently by Fischer-Colbrie [FC85] and

Gulliver [Gul86] in the 1980’s. For M3 ⊂ R4 this was proven by Chodosh–

Li [CL21] (cf. [CL23, CMR22]) in 2021 and for M4 ⊂ R5 very recently by

Chodosh–Li–Minter–Stryker [CLMS24]. In R8 and beyond, the equivalence of

finite total curvature and finite index fails (basically due to the existence of

non-flat area-minimizing cones):

Theorem 2.2 ([Sim67, BDGG69, HS85]). For n + 1 ≥ 8 there is a com-

plete two-sided minimal hypersurface Mn ⊂ Rn+1 with index(M) = 0 but with

infinite total curvature.

It’s known in all dimensions that finite total curvature implies finite index.

The converse is thus open in R6,R7. With additional volume growth assump-

tions it is known to hold in these dimensions:

(1) M5 ⊂ R6 with intrinsic Euclidean volume growth |BM
ρ | = O(ρ5) (see

Proposition 6.1),

(2) M6 ⊂ R6 with extrinsic Euclidean volume growth |M ∩ Bρ| = O(ρ6)

(Tysk [Tys87], see Remark 6.2).
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3. Finite total curvature

The finite total curvature condition places strong restrictions on the geome-

try of a minimal hypersurface. The following result gives a general description

of the asymptotic behavior.

Theorem 3.1 ([Oss64, And84]). If a complete two-sided minimal hypersurface

Mn ⊂ Rn+1 has finite total curvature then:

• M is topologically finite in the sense that its diffeomorphic to a closed

manifold with finitely many punctures M ≈ M̄ \ {p1, . . . , pr},
• the Gauss map extends to a C0-map ν : M̄ → Sn,

• M is properly embedded with Euclidean volume growth |M ∩ Bρ| =

O(ρn),

• there’s a hyperplane Π ⊂ Rn+1 so that each of the finitely many ends

of M is an outer graph a function on Π of the form a log r + b + . . .

when n = 2 and a+ br2−n + . . . when n ≥ 3.

A proof can be found in Appendix A.

Remark 3.2. This holds with some modifications even if M is immersed. For

n ≥ 3 this holds with essentially no change, but when n = 2 the ends of M

could have multiplicity (see Figure 2). In fact, this result can even be extended

to higher co-dimension minimal surfaces (cf. [CO67, And84]).

Exercise 1. Using Theorem 3.1 and Gauss–Bonnet, show that if M2 ⊂ R3 is

complete, two-sided, minimal surface of finite total curvature, then the total

curvature is quantized: 1
2

∫
M
|A|2 = 4πk for some k ∈ {0, 1, 2, . . . }.

We have the following (see Exercise 11):

3.1. Conformal properties. Theorem 3.1 can be considerably improved for

M2 ⊂ R3 by taking the conformal structure of M into account.

Exercise 2. If M2 ⊂ R3 is two-sided minimal show that the Gauss map

ν : M → S2 is conformal (and orientation reversing).

Theorem 3.3 ([Oss64]). When n = 2 in Theorem 3.1, the relationship M ≈
M̄ \ {p1, . . . , pr} can be chosen to be a conformal diffeomorphism. Moreover,

the Gauss map extends as a conformal map ν : M̄ → S2.
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We now relate (following Fischer-Colbrie [FC85]) the second variation of

area on M to an eigenvalue problem on M̄ . For v a constant vector, note that

|∇ ⟨ν,v⟩ |2 = |A(·,vT )|2,

so summing over v = e1, e2, e3 the standard Euclidean basis, we find

|∇ν|2 :=
3∑

k=1

|∇νk|2 = |A|2

where νk = ⟨ν, ek⟩. Thus, the second variation of area can be written as

QM(φ) =

∫
M

(|∇φ|2 − |∇ν|2u2)dµ

Since the Dirichlet integrand |∇f |2dµ is conformally invariant, we can fix

some metric ḡ on M̄ so that it’s conformal to g away from the punctures (for

example, we can fix ḡ to have constant curvature) and observe that

QM(φ) = QM̄(φ) :=

∫
M̄

(|∇̄φ|2 − |∇̄ν|2u2)dµ̄.

Clearly index(QM) ≤ index(QM̄) where the latter is considered as a bilinear

form on C∞(M̄) since C∞
c (M̄ \ {p1, . . . , pr}) ⊂ C∞(M̄). It turns out that the

opposite inequality holds as well [FC85]:

Exercise 3. Prove that index(QM) = index(QM̄) < ∞.

In particular, M2 ⊂ R3 finite total curvature has finite index. What’s more,

index(M) only depends on (1) the conformal type of the compactified surface

M̄ and (2) the Gauss map ν : M̄ → S2. See also [MR91].

3.2. The CLR inequality. For R4 and beyond, the fact that finite total

curvature implies finite index is a consequence of a general fact about the

index a Schrödinger operator. For V ∈ C∞
loc(M) on (M, g) a Riemannian

manifold we can define the bilinear form

(3.1) Q(φ) :=

∫
M

|∇φ|2 − V φ2.

on C∞
c (M). (The case of Mn ⊂ Rn+1 two-sided minimal is V = |A|2.) We

can define index(Q) exactly as in (1.2). For n ≥ 3, the so-called Cwikel–Lieb–

Rozenblum inequality estimates the index of a Schrodinger operator on Rn
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from above by Ln/2-norm of the potential V . We have the following version of

this due to Li–Yau that holds on a general Riemannian manifold (Mn, g) (for

n ≥ 3) where the Euclidean Sobolev inequality holds.

Theorem 3.4 ([LY83]). For n ≥ 3 assume that (Mn, g) satisfies a Euclidean

Sobolev inequality, namely there’s S > 0 so that

(3.2)

(∫
M

f
2n
n−2

)n−2
n

≤ S

∫
M

|∇f |2

for all f ∈ C∞
c (M). Then for V ∈ C∞

loc, the index of the bilinear form defined

in (3.1) satisfies

index(Q) ≤ C

∫
M

V
n
2

+ .

where C = C(n, S) depends only on the dimension and Sobolev constant.

Remark 3.5. Such an inequality cannot hold for general Schrödinger opera-

tors on R2 since if V ≥ 0 is any non-zero potential then index(∆R2 + V ) ≥ 1

(by a logarithmic cutoff argument), but we can arrange that C
∫
V < 1.

The Michael–Simon–Sobolev inequality [MS73] says that Mn ⊂ Rn+1 min-

imal satisfies a Sobolev inequality. (Brendle recently proved [Bre21] that the

constant in the Sobolev inequality can be taken to match the Euclidean one.)

Corollary 3.6. For n + 1 ≥ 4, if Mn ⊂ Rn+1 has finite total curvature then

it has finite index. In fact, we can estimate2

(3.3) index(M) ≤ C

∫
M

|A|n

We remark that even though the CLR inequality doesn’t hold for general

2-dimensional Schrödinger operators, an inequality of the form (3.3) actually

does hold for minimal surfaces M2 ⊂ R3. The best known such estimate is

due to Ejiri–Micallef [EM08] (see also [Tys87]):

index(M) ≤ −3 +
3

4π

∫
M

|A|2

Recall (Exercise 1) that the total curvature is quantized (unlike the case of

general potentials); this explains why there’s no obvious contradiction here.

2The constant C may be taken = 1
ωn−1

(
4e

n(n−2)

)n
2

.
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Catenoid Costa Wohlgemuth

Hoffman–Meeks deformation of Costa Costa–Hoffman–Meeks

Figure 1. Embedded finite total curvature minimal surfaces in R3.

Enneper Chen–Gackstatter Jorge–Meeks

Figure 2. Immersed finite total curvature minimal surfaces in R3
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Helicoid Riemann Scherk

Figure 3. Infinite total curvature minimal surfaces in R3

4. Examples

Examples of embedded finite total curvature/finite index minimal surfaces

M2 ⊂ R3:

(1) Plane: M̄ = S2, index = 0

(2) Catenoid: M̄ = S2, index = 1

(3) Costa’s surface: M̄ = C/L(1, i), index = 5

(4) Costa–Hoffman–Meeks (flat middle end): M̄k = ({(z, w) ∈ C∪{∞})2 :
wk+1 = zk(z2 − 1)} (genus k ≥ 1), index = 2k + 3 [Nay93, Mor09]

See Figure 13. Non-examples: any periodic surface (e.g. helicoid, Riemann

example, Scherk surfaces, etc.), see Figure 3. Immersed examples:

(1) Enneper’s surface: M̄ = S2, index = 1

(2) Chen–Gackstatter surface: M̄ = C/L(1, i), index = 3 [MR91, Corol-

lary 15]

(3) Richmond surface: M̄ = S2, index = 3 [Tuz91]

(4) Jorge–Meeks r-noid: M̄ = S2, index = 2r − 3 [MR91, Corollary 15]

See Figure 2.

Remark 4.1. Enneper’s surface and the catenoid look very different but both

have the same conformal compactification and compactified Gauss map. For

example, the catenoid has M = C\{0} and up to identifying S2 ≃ C∪{∞} via

3All pictures from Weber’s Minimal Surface Archive https://minimal.sitehost.iu.ed

u/archive/index.html.

https://minimal.sitehost.iu.edu/archive/index.html
https://minimal.sitehost.iu.edu/archive/index.html
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orientation reversing stereographic projection, the Gauss map is z. Enneper’s

surface has M = C and the same Gauss map. Thus, it’s not a coincidence

that both surfaces have the same index.

In R4 and beyond, only a few examples are known:

(1) Hyperplane: index = 0

(2) Higher dimensional catenoid: index = 1

Coutant has constructed [Cou12] general class of examples that look like hy-

perplanes connected by catenoids (satisfying a balancing condition; in R3 this

was done by Traizet [Tra02, Tra04]; the Hoffman–Meeks deformation of the

Costa surface eventually lies in this regime).

5. Classification results and conjectures

We now discuss the known results classification classifying low-index com-

plete minimal hypersurfaces.

5.1. Surfaces in 3-dimensions. Complete two-sided minimal M2 → R3:

(1) index(M) = 0 ⇒ flat plane (Fischer-Colbrie–Schoen, do Carmo–Peng,

Pogorelov [FCS80, dCP79, Pog81])

(2) index(M) = 1 ⇒ catenoid or Enneper (López–Ros [LR89])

(3) index(M) = 2 does not exist (Chodosh–Maximo [CM16, CM18])

In passing we mention that index(M) = 0 and one-sided does not exist (Ros

[Ros06]). When M2 ⊂ R3 is embedded then index(M) = 3 does not exist

(Chodosh–Maximo [CM18]). Natural problems:

(1) Classify immersed M2 → R3 with index(M) ≤ 3. (Known examples:

plane, catenoid, Enneper, Chen–Gackstatter, Richmond, Jorge–Meeks

3-noid)

(2) Classify embedded M2 ⊂ R3 with index(M) ≤ 5. (Known examples:

plane, catenoid, Costa, Hoffman–Meeks deformation4 of Costa surface)

4Hoffman–Meeks show (cf. [HK97]) that it’s possible to deform the flat end of the Costa
surface into a catenoidal end. The index of the resulting surfaces satisfies index(Mt) ≥ 4
[CM18, Che23] but the exact value is unknown.
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5.2. Ros’s harmonic 1-form method. We briefly mention the techniques

used in [CM16, CM18] to reduce low-index classification to the classification of

finite total curvature M2 ⊂ R3 with simple topology. The main idea due Ros

[Ros06] is to use harmonic 1-forms ω as test functions in the second variation

of area. Pushing this idea as far as possible leads to:

Theorem 5.1 (Chodosh–Maximo [CM18]). If M2 ⊂ R3 is complete finite

index minimal surface with genus g and r ends then

index(M) ≥ 1

3
(2g + 4r − 5).

So, for example, if M2 ⊂ R3 has index(M) ≤ 3 then g + 2r ≤ 7 and it’s

possible to classify [Sch83, LR91, Cos91] the possible such M . We remark that

this estimate is a kind of reverse CLR inequality (cf. [CM18, Theorem 1.10])

5.3. Higher dimensions. Complete two-sided minimal Mn → Rn+1:

(1) index(M3 → R4) = 0 ⇒ hyperplane (Chodosh–Li [CL21] cf. [CL23,

CMR22])

(2) index(M4 → R5) = 0 ⇒ hyperplane (Chodosh–Li–Minter–Stryker

[CLMS24])

(3) index(Mn → Rn+1) = 0, n + 1 ≤ 7, and |M ∩ Bρ| = O(ρn) ⇒ hyper-

plane (Schoen–Simon–Yau [SSY75], Schoen–Simon [SS81a], Bellettini

[Bel23]).

Natural problems:

(1) Classify index(Mn → Rn+1) = 0 for n+ 1 ∈ {6, 7} (hyperplanes?).

(2) Classify index(Mn ⊂ Rn+1) = 1 for 4 ≤ n+ 1 ≤ 7 (higher-dimensional

catenoid?).

We note that Li has proven [Li16] an estimate analogous to Theorem 5.1 for

M3 ⊂ R4.

6. Finite index implies finite total curvature (Theorem 2.1)

We now discuss the implication that if Mn ⊂ Rn+1 of finite index then it has

finite total curvature (when n+1 ∈ {3, 4, 5}). A basic fact about Schrodinger

operators of finite index is that they are outer-stable:
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Exercise 4. For a general Schrödinger operator ∆ + V on a Riemann man-

ifold (M, g) with index(∆ + V ) < ∞ prove there’s K ⊂ M compact so that∫
M
|∇φ|2 − V φ2 ≥ 0 for any φ ∈ C∞

c (M \K).

Proposition 6.1. Let n + 1 ≤ 6. Consider Mn ⊂ Rn+1 a complete outer-

stable, two-sided, minimal hypersurface with intrinsic Euclidean volume growth

|BM
ρ | = O(ρn). Then M has finite total curvature.

Proof. By work of Schoen–Simon–Yau [SSY75] (cf. [CL21, Appendix D]) if

4 ≤ n+ 1 ≤ 6 then we can upgrade the stability inequality for M \K to read

(6.1)

∫
M\K

|A|nφn ≤ C

∫
M\K

|∇φ|n

for some C = C(n) and any φ ∈ C∞
c (M \ K) (if n + 1 = 3, this also holds

just from the stability inequality with C = 1). Taking φ to be a linear cutoff

between BM
ρ and BM

2ρ , modified to cut off in a fixed neighborhood of K, we

obtain ∫
M\K

|∇φ|n = C +O(ρ−n|BM
2ρ |) = O(1).

so since |A| is in Ln
loc we can conclude from (6.1) that |A| ∈ Ln(M). □

Remark 6.2. It’s not known if (6.1) holds for outer-stable M6 ⊂ R7. We

remark that Tysk [Tys89] has shown how to use the work5 of Schoen–Simon

[SS81b] to obtain finite total curvature for outer-stable M6 ⊂ R7 with the

stronger assumption of extrinsic Euclidean volume growth |M ∩Bρ| = O(ρ6).

Theorem 6.3. If M2 ⊂ R3 complete, outer-stable, two-sided minimal hyper-

surface then M has intrinsic quadratic area growth |BM
ρ | = O(ρ2).

This proves Theorem 2.1 for M2 ⊂ R3. We give a proof following the

work of Gulliver–Lawson [GL86] (see also [Pog81, CM02, Cas06, ER11, Esp13,

BC14]). A different approach is found in the work of Fischer-Colbrie [FC85]

who directly proves that each end of M2 ⊂ R3 is conformal to a punctured disk

D \ {0}. (Granted this fact, it is straightforward to construct a logarithmic

cutoff function to deduce that M has finite total curvature from which it

follows a posteriori that M has quadratic area growth.)

5Note that the work [SS81b] does not consider immersions (in contrast to what is claimed
in [Tys89]). However, this has can be fixed using to recent work of Bellettini [Bel23].
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Sketch of the proof. Let K ⊂ M be compact with smooth boundary so that

M \ K is stable. We can enlarge K so that each component of M \ K is

non-compact.

Write ρ : M \K → [0,∞) for the intrinsic distance function to K. In this

sketch we ignore the fact that ρ and it’s level sets will not be smooth in general.6

Write Ω(s) := ρ−1([0, s]), γ(s) = ρ−1(s), and L(s) = length(γ(s)). Since

Dν has trace-zero, we find the Gaussian curvature satisfies KM = detDν =

−1
2
|Dν|2 = −|A|2. Thus, the first variation of length and Gauss–Bonnet gives

L′(s) =

∫
γ(s)

k =

∫
∂K

k + 2πχ(Ω(s)) +
1

2

∫
Ω(s)

|A|2.

Note that χ(Ω(s)) ≤ 0, so

L′(s) ≤ C +
1

2

∫
Ω(s)

|A|2

for C independent of s. We now consider φ = φ(ρ) in stability, where

φ(s) =

t t ≤ 1

R−1(1 +R− s) t ∈ (1, R + 1]

(this is not smooth but its use be justified by an approximation argument).

Using the co-area7 formula, we obtain

|Ω(1)|+R−2|Ω(R + 1) \ Ω(1)|

=

∫
Ω(1)

|∇φ|2 +
∫
Ω(R+1)\Ω(1)

|∇φ|2

≥
∫
Ω(1)

|A|2φ(ρ)2 +
∫
Ω(R+1)\Ω(1)

|A|2φ(ρ)2

=

∫ 1

0

(∫
γ(s)

|A|2
)
s2ds+R−2

∫ R+1

1

(∫
γ(s)

|A|2
)
(1 +R− s)2ds

= C +R−2

∫ R+1

1

d

ds

(∫
Ω(s)

|A|2
)
(1 +R− s)2ds

6These calculations can be rigorously justified using [Har64] (see also [ST89, ST93]).
7See [Sim83, Theorem 7.3]. For our purposes we just need to know that if a function
f : (M, g) → R has gradient |∇f | ≈ 1 then up to a multiplicative error, we can write an
integral over M as an average integral over level sets of f .
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= C + 4R−2

∫ R+1

1

(
1

2

∫
Ω(s)

|A|2
)
(1 +R− s)ds

≥ C + 4R−2

∫ R+1

1

L′(s)(1 +R− s)ds

= C + 4R−2

∫ R+1

1

L(s)ds

= C + 4R−2|Ω(R + 1) \ Ω(1)|.

Rearranging this yields R−2|Ω(R + 1) \ Ω(1)| = O(1). This completes the

proof. □

6.1. Finite topology. We now turn to the proof of Theorem 2.1 in R4 and

R5. Here it is crucial to know a priori that finite index implies finite topology

in a certain sense. We define the space of L2-harmonic forms by

Hk
L2(M) := {ω ∈ C∞

loc(Λ
kT ∗M) : dω = d∗ω = 0} ∩ L2(ΛkT ∗M).

and set bkL2(M) := dimHk
L2(M).

Proposition 6.4 (Li–Wang [LW02], cf. [CSZ97]). For n+1 ≥ 4, if Mn ⊂ Rn+1

is a complete, outer-stable two-sided minimal hypersurface then b1L2(M) < ∞.

Proof. A harmonic 1-form satisfies the Bochner formula

1

2
∆|ω|2 = |∇ω|2 +Ric(ω♯, ω♯).

The Gauss equations and minimality imply that Ric ≥ −|A|2. Furthermore,

we recall the improved Kato inequality:

Exercise 5. Prove that |∇ω|2 ≥ n
n−1

|∇|ω||2.

Thus,

|ω|∆|ω|+ |A|2|ω|2 ≥ 1

n− 1
|∇|ω||2.

If φ is supported in the stable part M \K then taking φ|ω| in stability yields∫
M

φ2|A|2|ω|2 ≤
∫
M

|ω|2|∇φ|2 + 1

2

〈
∇φ2,∇|ω|2

〉
+ |∇|ω||2φ2

=

∫
M

|ω|2|∇φ|2 − 1

2
φ2∆|ω|2 + |∇|ω||2φ2
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=

∫
M

|ω|2|∇φ|2 − φ2|ω|∆|ω|

so this yields
1

n− 1

∫
M

|∇|ω||2φ2 ≤
∫
M

|ω|2|∇φ|2

In particular, we get ∫
M

|∇(φ|ω|)|2 ≤ C

∫
M

|ω|2|∇φ|2.

Since n ≥ 3, we can combine this with the Michael–Simon Sobolev inequality

to obtain (∫
M

(φ|ω|)
2n
n−2

)n−2
n

≤ C

∫
M

|ω|2|∇φ|2

for suppφ ⋐ M \K.

In particular, fixing x0 and ρ > 0 so that K ⋐ BM
ρ (x0) we can choose a

good cutoff function (using ω ∈ L2) to conclude(∫
M\BM

ρ (x0)

|ω|
2n
n−2

)n−2
n

≤ C

∫
BM

ρ (x0)\K
|ω|2.

Hölder’s inequality and hole-filling gives∫
BM

ρ+1(x0)

|ω|2 ≤ C

∫
BM

ρ (x0)

|ω|2

where C depends on ρ and M but not ω. On the other hand, Moser iteration

applied to the Bochner formula (on BM
1 (z) ⊂ BM

ρ+1(x0)) gives

sup
BM

ρ (x0)

|ω|2 ≤ C

∫
BM

ρ+1(x0)

|ω|2

so we can combine these inequalities to get

(6.2) sup
BM

ρ (x0)

|ω|2 ≤ C

∫
BM

ρ (x0)

|ω|2.

We claim that such an inequality can only hold of the space of forms is finite

dimensional. To prove the claim (cf. [Li80, Lemma 11]) we define a bilinear

form on H1
L2(M) by ⟨⟨ω, ω′⟩⟩ :=

∫
BM

ρ (x0)
⟨ω, ω′⟩. Unique continuation for har-

monic forms implies this is an inner product. Consider an ⟨⟨·, ·⟩⟩ orthonormal
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set ω1, ω2, . . . , ωℓ. For z ∈ BM
ρ (x0) fixed, consider

ℓ∑
j=1

|ωj(z)|2 ≤

∥∥∥∥∥
ℓ∑

j=1

|ωj(z)|ωj

∥∥∥∥∥
L∞(BM

ρ (x0))

≤ C

∥∥∥∥∥
ℓ∑

j=1

|ωj(z)|ωj

∥∥∥∥∥
L2(BM

ρ (x0))

= C

(
ℓ∑

j=1

|ωj(z)|2
) 1

2

where we used (6.2) in the second inequality. Thus,
∑ℓ

j=1 |ωj(z)|2 ≤ C which

yields ℓ ≤ C after integrating over z ∈ BM
ρ (x0) by orthonormality. This

completes the proof. □

The next lemma is basically [Car07, Theorem 1.10 and Proposition 2.11].

Lemma 6.5. For n + 1 ≥ 4, consider Mn ⊂ Rn+1 a complete, outer-stable

two-sided minimal hypersurface, and Ω1 ⊂ Ω2 ⊂ . . . an exhaustion of M by

bounded regions with smooth boundary so that each component of M\Ωj is non-

compact. Then ∂Ωj has a uniformly bounded number of connected components.

Exercise 6. If the conclusion fails show that dimH2(M) = ∞.

Proof. Combining Exercise 6 with Poincaré duality gives dimH1
c (M) = ∞

(we’ll use compactly supported de Rham cohomology). By Hodge theory8 we

have the orthogonal direct sum decomposition

L2(T ∗M) = H1
L2(M)⊕ dC∞

c (M)⊕ d∗C∞
c (Λ2T ∗M)

so we can define a linear mapH1
c (M) → H1

L2(M) by orthogonal projection. We

claim this map is injective when we have a Sobolev inequality. Suppose that

[α] 7→ 0. Since α is closed, we have that α ∈ d∗C∞(Λ2T ∗M)
⊥
, so α ∈ dC∞

c (M),

i.e., there’s fk ∈ C∞
c (M) with dfk converging to α in L2(T ∗M). Using that M

satisfies the Sobolev inequality [MS73, Bre21], we conclude that fk limits to

some f ∈ L
2n
n−2 (M). Since α has compact support, we find that f is locally

8Elliptic regularity and duality gives H1
L2 = (dC∞

c )⊥ ∩ (d∗C∞
c )⊥. Integrating by parts,

d2 = 0 implies that dC∞
c ⊥ d∗C∞

c . See [Car07, §1.1.3]
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constant outside of the compact set suppα. In particular, since the ends

of M have infinite volume and f ∈ L
2n
n−2 (M), we see that f ∈ C∞

c (M), so

[α] = 0 ∈ H1
c (M). This completes the proof. □

6.2. Area-controlled exhaustion. We have the following (non-standard)

definition:

Definition 6.6. A complete, outer-stable, two-sided minimal hypersurface

Mn ⊂ Rn+1 has the area-controlled exhaustion property if there’s C > 0, x0 so

that for any ρ > 0 sufficiently large, there’s a compact set Ω ⊃ BM
ρ (x0) with

smooth boundary so that any connected component Σ of ∂Ω has |Σ| ≤ Cρn−1

Lemma 6.7. For n + 1 ≤ 6, a complete, outer-stable, two-sided minimal

hypersurface Mn ⊂ Rn+1 with the area-controlled exhaustion property has finite

total curvature.

Proof. For ρ > 0 sufficiently large, choose Ω as in the definition. If any com-

ponent of M \Ω is compact, we can add it to Ω without changing the asserted

property. By Lemma 6.5, ∂Ω has a uniformly bounded number of components.

Thus |∂Ω| ≤ Cρn−1. Since M satisfies the Euclidean Sobolev inequality, it also

satisfies the Euclidean isoperimetric inequality. Thus

|BM
ρ (x0)| ≤ |Ω| ≤ C|∂Ω|

n
n−1 ≤ Cρn.

The assertion then follows from the Schoen–Simon–Yau estimates (see Propo-

sition 6.1). □

Thus, the proof that Mn ⊂ Rn+1 of finite index has finite total curvature is

completed for n+ 1 ∈ {4, 5} (see Theorem 2.1) is completed via the following

result:

Proposition 6.8 ([CL23, CLMS24]). For n + 1 ∈ {4, 5} a complete, outer-

stable, two-sided minimal hypersurface Mn ⊂ Rn+1 has the area-controlled

exhaustion property.

It’s unclear if Proposition 6.8 holds for n+1 ∈ {6, 7}. In fact, it might very

well hold for all dimensions, not just n+ 1 ≤ 7 (but there’s little evidence in

either direction).
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The main technique (as discussed in the next section) used to prove Propo-

sition 6.8 is the analysis of stable µ-bubbles (prescribed mean curvature hyper-

surfaces) in a conformally related metric first introduced by Gulliver–Lawson

[GL86] during their study of removable singularities for stable minimal surfaces

in R3.

7. The Gulliver–Lawson conformal metric

Consider Mn ⊂ Rn+1 complete, outer-stable, two-sided minimal hypersur-

face. Let g denote the induced metric on M . Let r(x) = |x| denote the

ambient Euclidean distance (restricted to M). It’s convenient to assume that

0 ̸∈ M . Following [GL86] we consider g̃ := r−2g. As we’ll see, (M, g̃) has

positive curvature (scalar, bi-Ricci) in a spectral sense.

Exercise 7. Prove:

(1) g̃ is complete,

(2) ∆̃ log r = n(1− |∇r|2),
(3) r2R = R̃− 2n(n− 1) + (n− 1)(n+ 2)|∇r|2.

We can assume that M \K is stable for K compact. In particular, outer-

stability implies that ∫
M

|∇φ|2dµ ≥
∫
M

|A|2φ2dµ ≥ 0

for any φ ∈ C∞
c (M \K).

Proposition 7.1 ([GL86]). For n + 1 ≥ 4, (M \ K, g̃) has strictly positive

scalar curvature in a spectral sense. More precisely∫
M

(
|∇̃φ|2 +

(
R̃− (3n− 2)(n− 2)

4

)
φ2

)
dµ̃ ≥ 0

for any φ ∈ C∞
c (M \K).

Note that if R̃ ≥ (3n−2)(n−2)
4

then this inequality would automatically hold.

That’s why this can be viewed as a spectral version of positivity of scalar

curvature.
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Proof. We have dµ̃ = r−ndµ and |∇̃φ|2g̃ = r2|∇φ|2g. Thus, we can write outer-

stability as ∫
M

rn−2|∇̃φ|2dµ̃ ≥
∫
M

rn|A|2φ2dµ ≥ 0.

To obtain information about a Schrödinger operator based on ∆̃ we want to

replace φ by r
2−n
2 φ. Note that

rn−2|∇̃(r
2−n
2 φ)|2 =

∣∣∣∣∇̃φ+
2− n

2
φ∇̃ log r

∣∣∣∣2
= |∇̃φ|2 + (n− 2)2

4
r2|∇̃r|2φ2 − n− 2

2
g̃(∇̃ log r, ∇̃φ2)

so after integrating by parts, outer-stability becomes∫
M

|∇̃φ|2dµ̃ ≥
∫
M

(
r2|A|2 − (n− 2)2

4
r−2|∇̃r|2 − n− 2

2
∆̃ log r

)
φ2dµ̃.

By Exercise 7

∆̃ log r = n(1− |∇r|2)

so using r−2|∇̃r|2 = |∇r|2, this becomes∫
M

|∇̃φ|2dµ̃ ≥
∫
M

(
r2|A|2 − n(n− 2)

2
+

n2 − 4

4
|∇r|2

)
φ2dµ̃.

By combining Exercise 7 and the Gauss equation R = −|A|2 we get

r2|A|2 = −R̃ + 2n(n− 1)− (n− 1)(n+ 2)|∇r|2

so using the Gauss equations we get∫
M

|∇̃φ|2dµ̃ ≥
∫
M

(
−R̃ +

n(3n− 2)

2
− (3n− 2)(n+ 2)

4
|∇r|2

)
φ2dµ̃.

Using |∇r|2 ≤ 1, we get∫
M

|∇̃φ|2dµ̃ ≥
∫
M

(
−R̃ +

(3n− 2)(n− 2)

4

)
φ2dµ̃.

Rearranging this finishes the proof. □

7.1. µ-bubbles. For simplicity, we now discuss how to analyze 3-manifolds

with pointwise scalar curvature positivity R̃ ≥ R̃0 (the spectral scalar curva-

ture condition introduces some notational and conceptual complications, but
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the main ideas are the same). We’ll also restrict to n = 3 (we’ll briefly discuss

n = 4 later).

Our key tool to analyze g̃ is the µ-bubble construction of Gromov, localizing

the following fact due to Schoen–Yau:

Theorem 7.2 ([SY79]). Suppose that Σ2 ⊂ (X3, g) is a connected closed two-

sided stable minimal surface in an oriented 3-manifold with scalar curvature

RX ≥ R0 > 0. Then |Σ| ≤ 8π
R0
.

Proof. The stability of Σ reads∫
Σ

(|A|2 +RicX(ν, ν))φ
2 ≤

∫
Σ

|∇φ|2

The Gauss equations give

RX = 2KΣ + 2RicX(ν, ν) + |A|2 −H2

so because Σ is minimal we can write this as∫
Σ

(RX + |A|2 − 2KΣ)φ
2 ≤ 2

∫
Σ

|∇φ|2

In particular we get ∫
Σ

|∇φ|2 + 1

2
(2KΣ −R0)φ

2 ≥ 0.

This is a spectral version of 2KΣ ≥ R0. To deduce the area estimate from this,

we can take φ = 1 to find

R0|Σ| ≤ 2

∫
Σ

KΣ = 4πχ(Σ).

Thus Σ is a sphere, so 4πχ(Σ) = 8π. This completes the proof. □

To localize this, we consider

µ(Ω) = |∂Ω| −
∫
Ω

h

for Ω ⊂ (X, g).
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Theorem 7.3 ([Gro18]). If Ω ⊂ (X3, g), RX ≥ R0 is a stable critical point of

the µ-bubble functional, then∫
Σ

(
R0 +

3

2
h2 − 2|∇h|

)
≤ 4πχ(Σ)

for any connected component Σ of ∂Ω.

Proof. The first variation is

d

dt

∣∣∣
t=0

µ(Ωt) =

∫
∂Ω

(H − h)φ

so H = h for a critical point. If Ω is stationary and stable, we can differentiate

this again to find

0 ≤
∫
∂Ω

|∇φ|2 − (|A|2 +RicX(ν, ν) + ⟨∇h, ν⟩)φ2.

Since RX ≥ R0 and H = h, the Gauss equations

RX = 2K∂Ω + 2RicX(ν, ν) + |A|2 −H2

rearrange to read9

R0 − 2K∂Ω + h2 ≤ 2(RicX(ν, ν) + |A|2).

We can thus take φ = 1 on a fixed component Σ of ∂Ω to find∫
Σ

R0 + h2 − 2 ⟨∇h, ν⟩ ≤ 4πχ(Σ).

This concludes the proof. □

The key aspect of the argument is to choose h appropriately. Assume that

R0 = 2 for simplicity. For Ω0 ⊂ (X, g) fixed compact set (with smooth bound-

ary, say) we will take

h(x) = − tan(1
2
dX(Ω0, x) +

π
2
)

(in reality we need to smooth out dX a bit here). Note that since |∇dX | = 1

and tan′ = 1 + tan2, we have

2|∇h| = 1 + h2.

9At this step we could have used AM-GM to get the sharp coefficient in front of h2.
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Thus, if a stable µ-bubble exists, since

R0 +
3

2
h2 − 2|∇h|

it will have |Σ| ≤ 8π by Theorem 7.3. However, we note that h → ∞ as

dX(x,Ω0) ↘ 0 and h → −∞ as dX(x,Ω0) ↗ 2π. This means that ∂Ω0

and ∂{dX(x,Ω0) > 2π} are strict barriers for the minimizing µ(Ω) among

Ω0 ⊂ Ω ⊂ U2π(Ω). As such, one can prove that a stable µ-bubble always

exists in this annular region.

Remark 7.4. It might hold that µ(Ω) = −∞, but this is easily handled by

replacing
∫
Ω
h by the renormalized functional

∫
(χΩ−χΩ∗)h for some arbitrary

Ω0 ⋐ Ω∗ ⊂ U2π(Ω). The first and second variation is unchanged.

For example, this yields:

Proposition 7.5. There’s constants10 C,A > 0 so that if (X3, g) has R ≥ 2

for any Ω0 ⊂ X compact, there’s Ω0 ⊂ Ω ⊂ UC(Ω0) compact with smooth

boundary so that any component Σ of ∂Ω has |Σ| ≤ A.

7.2. The area-controlled exhaustion property. Consider a complete, outer-

stable, two-sided minimal hypersurface M3 ⊂ R4. Recall that we’d like to

check that for ρ > 0 sufficiently large, there’s Ω ⊃ BM
ρ (x0) with smooth

boundary so that any component Σ of ∂Ω has |Σ| ≤ Cρ2. Since (M \K, g̃) has

spectral scalar curvature bounds, generalizing Proposition 7.5 appropriately,

we find that for any ρ > 0 sufficiently large there’s

BM
ρ (x0) ⊂ Ω

with dg̃(∂Ω, B
M
ρ (x0)) ≤ C so that any connected component Σ of ∂Ω has

|Σ|g̃ ≤ A.

Exercise 8. By comparing g, g̃, and extrinsic distances, show that the extrin-

sic distance satisfies r ≤ eCρ on ∂Ω.

Using this, we find that

|Σ|g =
∫
Σ

r2dµ̃ ≤ Cρ2

10If we were more careful, it’s possible to obtain explicit (even sharp in some cases) bounds
for these constants.
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Thus, M3 has the area-controlled exhaustion property.

7.3. Bi-Ricci curvature. Positivity of scalar curvature does not suffice to

prove the area-controlled exhaustion property for (Xn, g), n ≥ 4.

Exercise 9. Show that R2×S2 has R = 2 but does not have the area-controlled

exhaustion property.

In [CLMS24] it was observed that in R5 one can improve spectral positivity

of scalar curvature for the Gulliver–Lawson metric (Proposition 7.1) to spectral

positivity of bi-Ricci curvature. For e1, e2 orthonormal, we define

BiRic(e1, e2) := Ric(e1, e1) + Ric(e2, e2)−R(e1, e2, e2, e1).

This notion of curvature was introduced by Shen–Ye [SY96] (cf. [BHJ24,

Xu23]). It lies in between scalar curvature and Ricci curvature and interacts

well with the stability inequality for stable minimal hypersurfaces.

Exercise 10.

(1) Show that in 3-dimensions, BiRic(e1, e2) = CR for some C > 0.

(2) For n ≥ 4 dimensions, show that if BiRic(e1, e2) ≥ Λ then R ≥ C(n)Λ,

so positivity of BiRic is stronger than positivity of scalar curvature in

dimensions n ≥ 4.

(3) Show that R2 × S2 has BiRic ≥ 0 but not BiRic > 0.

By appropriately generalizing the Gulliver–Lawson calculation it follows

that if M4 ⊂ R5 is outer-stable then (M \K, g̃) has strictly positive bi-Ricci

curvature (in a spectral sense). See [CLMS24, Theorem 3.1]. Instead of ex-

plaining this calculation, we briefly indicate why it’s a useful generalization

through the following result.

Proposition 7.6 ([SY96]). Suppose that Σn−1 ⊂ (Xn, g) is a closed two-sided

stable minimal hypersurface and BiRicX ≥ 1. Write λRic,Σ for the smallest

eigenvalue of RicΣ. Then,

(7.1)

∫
Σ

|∇φ|2 + (λRic,Σ − 1)φ2

for φ ∈ C∞(Σ).
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Remark 7.7. Note that this says that RicΣ ≥ 1 in a spectral sense. For

example, Shen–Ye used this to prove [SY96] that each component of Σ will

have uniformly bounded diameter when n ≤ 5. Surprisingly this diameter

bound can fail when n ≥ 6 by examples of Xu [Xu23]. This shows that there

are some subtleties to be concerned with when discussing spectral notions of

positivity of curvature.

Proof of Theorem 7.6. Let e1, . . . , en−1, ν denote an orthonormal basis for TpM ,

p ∈ Σ with λRic,Σ = RicΣ(e1, e1). The Gauss equations give

RΣ(e1, ej, ej, e1) = RX(e1, ej, ej, e1) + A(e1, e1)A(ejej)− A(e1, ej)
2.

Summing j = 2, . . . , n− 1 gives

λRic,Σ = RicX(e1, e1)−RX(e1, ν, ν, e1)−
n−1∑
j=1

A(e1, ej)
2

≥ BiRic(e1, ν)− RicX(ν, ν)− |A|2.

Rearranging this we find

RicX(ν, ν) + |A|2 ≥ 1− λRic,Σ.

Used in stability this becomes∫
Σ

|∇φ|2 + (λRic,Σ − 1)φ2

This completes the proof. □

The proof of the area-controlled exhaustion property for M4 ⊂ R5 proceeds

similarly to the M3 ⊂ R4 case:

(1) Using the µ-bubble construction, and spectral bi-Ricci positivity of the

Gulliver–Lawson metric (M\K, g̃), findBM
ρ ⊂ Ω with dg̃(∂Ω, B

M
ρ (x0)) ≤

C so that any component of ∂Ω has positive Ricci curvature in the

spectral sense as in (7.1).

(2) Show that (Σ3, gΣ) with positive Ricci curvature in the spectral sense

has an upper volume bound. (This is a spectral Bishop–Gromov in-

equality.)
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Step (1) is similar to the lower dimensional case (but somewhat more compli-

cated). Surprisingly, the proof of step (2) in [CLMS24, Theorem 5.1] does not

seem to extend to higher dimensions. As such, at the moment, it’s not clear

if either step (1) or (2) can be extended to M5 ⊂ R6.

Appendix A. Structure of finite total curvature minimal

hypersurfaces (Theorem 3.1)

Estimates for minimal surfaces with small total curvature were first proven

in R3 by Choi–Schoen [CS85] (cf. [Whi87b]). The following generalization to

all dimensions is due to Anderson [And84].

Proposition A.1. For ε > 0 there’s δ = δ(ε, n) > 0 so that if Mn ⊂ Rn+1 is

a minimal hypersurface with ∫
M

|A|n < δ

then dM(x, ∂M)|A|(x) ≤ ε.

Proof. We follow a standard blow-up argument. Consider Mk with

(A.1)

∫
Mk

|AMk
|n → 0

but d(x, ∂Mk)|AMk
|(x) ≥ ε. We can assume that Mk are smooth compact

manifolds with boundary and that xk achieves supx∈Mk
dMk

(x, ∂Mk)|AMk
|(x).

Translating and scaling we can assume that xk = 0 and |AMk
|(0) = 1 (note that

(A.1) is scaling invariant). Thus, our assumption becomes dMk
(0, ∂Mk) ≥ ε.

Furthermore, for z ∈ Mk, we have

|AMk
|(z) ≤ dMk

(0, ∂Mk)

dMk
(z, ∂Mk)

≤ dMk
(0, ∂Mk)

dMk
(0, ∂Mk)− dMk

(0, z)

In particular, we find that |AMk
| ≤ 2 on BMk

ε/2 (0). As long as ε > 0 is sufficiently

small, this guarantees that BMk

ε/2 (0) is graphical over the tangent plane T0Mk

(cf. [CM11, Lemma 2.4]). Schauder estimates for the minimal surface equation

implies that BMk

ε/4 (0) converges smoothly to a minimal graph M∞. We have

that |AM∞|(0) = 1 so M∞ isn’t flat. This contradicts (A.1). □
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Corollary A.2. If 0 ∈ Mn ⊂ Rn+1 is a complete minimal hypersurface with

finite total curvature then

dM(x, 0)|A|(x) → 0

as dM(x, 0) → ∞.

Proof. Consider balls of size ρ = dM(x, 0)/2 in Proposition A.1. □

Note that this implies that M is totally geodesic at infinity in the sense that

any subsequential limit of λM as λ → 0 in C∞
loc(Rn+1 \ {0}) (in the sense of

immersions) is contained in a flat affine hyperplane.

Corollary A.3. If 0 ∈ Mn ⊂ Rn+1 is a complete minimal hypersurface with

finite total curvature then there’s K ⊂ M compact with |∇r| ≥ 1
2
on M \

K, where r(x) = |x⃗| is the extrinsic distance. In particular, M is properly

embedded and has finitely many ends.

Proof. There’s a ball BM
ρ0
(0) ⊂ M so that dM(x, 0)|A|(x) ≤ 1

4
for x ∈ M \

BM
ρ0
(0). For p ∈ M let γ be a unit-speed minimizing geodesic from 0 to p. Let

T = γ′. We compute

T ⟨x⃗, T ⟩ = ⟨DT x⃗, T ⟩ − ⟨x⃗, ν⟩A(T, T ) = 1− ⟨x⃗, ν⟩A(T, T ) ≥ 1− r(γ(t))|A|(x).

Since r(γ(t)) ≥ dM(0, γ(t)) we find T ⟨x⃗, T ⟩ ≥ 3
4
for t ≥ ρ0. Integrating this

proves that |∇r| ≥ ⟨∇r, T ⟩ ≥ 1
2
outside of a compact set. In particular,

integrating ⟨∇r, T ⟩ ≥ 1
2
along γ, we also get that r(p) ≥ 1

4
dM(0, p) outside of

a compact set, which implies properness.

Since ∇r is non-vanishing on M \K, Morse theory implies that M \K ≈
Γn−1 × (0,∞) a (possibly disconnected) smooth closed manifold (we can take

Γ = M ∩ ∂Bρ, ρ ≫ 0). This completes the proof. □

Note that if Π ⊂ Rn+1 is an affine hyperplane that does not pass through the

origin, then∇r = 0 somewhere. In particular, this implies that any blow-down

limit has image a hyperplane through the origin.

Corollary A.4. If Mn ⊂ Rn+1 is complete minimal hypersurface with finite

total curvature then M has extrinsic Euclidean volume growth |M ∩ Bρ| =

O(ρn).
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Proof. We can arrange that |∇r| ≥ 1
2
on M \Bρ1 . The co-area formula yields

|M ∩Bρ| = O(1) +

∫ ρ

ρ1

∫
M∩∂Bs

dHn−1

|∇r|
ds

Thus, it remains to estimate Hn−1(M ∩ ∂Bs) for s ≫ 0. Since M blows down

to hyperplanes through the origin, each component of s−1(M ∩ ∂Bs) is locally

smoothly close to an equatorial sphere Sn−1 ⊂ ∂B1. When n ≥ 3, Sn−1 is

simply connected. Thus we find that

Hn−1(M ∩ ∂Bs) = O(sn−1)

as s → ∞, completing the proof. For n = 2, we can use embeddedness to

argue that each component of s−1(M ∩ ∂Bs) is close to a great circle (with

multiplicity one) yielding the same property. This completes the proof. □

To complete the proof of Theorem 3.1 the main ingredient still missing is the

fact that the blow-down limit11 of λM is a fixed hyperplane12 Π independent of

the sequence λ → 0. There are several proofs possible. For example, [AA81,

Whi18, EK23] (in particular [AA81] would extend to the immersed/higher-

codimension case). Instead of discussing these proofs, in Appendix B we give

a proof of uniqueness of Π under the a priori assumption that the end is

stable. Note that since the CLR inequality (Corollary 3.6) already implies

that Mn ⊂ Rn+1 of finite total curvature has finite index for n+ 1 ≥ 4, this is

only missing the M2 ⊂ R3 case (which we do not discuss further).

Granted this fact, it follows that the ends are diffeomorphic to Sn−1×(0,∞)

and the Gauss map limits to a normal vector to Π along each end. Finally, the

ends will be outer graphs over Π of functions with the asserted expansions by

an argument of Schoen [Sch83, Propositions 1 and 3] based on the linearization

of the minimal surface equation.

Exercise 11. Use Theorem 3.1 to prove Theorem 3.3. More precisely, consider

M2 ⊂ R3 complete minimal surface of finite total curvature.

11We can now take this in the varifold sense, or better yet in the sense of smooth embedded
minimal surfaces with area and curvature bounds.
12When M is immersed, the blow-down limit will be the union of hyperplanes, but these
hyperplanes will still be independent of the chosen sequence.
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(1) Prove that each end of M is conformal to a punctured disk D \ {0}.
Conclude that M is conformally equivalent to M̄ \ {p1, . . . , pr}.

(2) Since the Gauss map ν : M → S2 is conformal (and orientation re-

versing) σ ◦ ν : M → C ∪ {∞} is meromorphic for any orientation

reversing stereographic projection. Using this, prove that the Gauss

map extends across the punctures.

Note that one could prove Theorem 3.3 directly from Huber’s theorem and

complex analysis without going through Theorem 3.1. See e.g. [Oss69, §9]
(see also [Whi87a]).

Exercise 12. Generalize the results in this section to arbitrary dimension

and co-dimension. Namely, show that Mk ⊂ RN minimal surface of finite

total curvature (i.e., |A⃗| ∈ Lk) satisfies the conclusions of Theorem 3.1 (and

Theorem 3.3 when k = 2). When k = 2 some care needs to be taken with the

estimate for H1(M ∩ ∂Bs).

Appendix B. Planar tangent cones are unique (Tysk’s verison)

Suppose that Mn ⊂ Rn+1 complete two-sided minimal has the property that

for λk → 0, after passing to a subsequence, λkM converges subsequentially to

a hyperplane Π through the origin in C∞
loc(Rn+1 \ {0}) with finite multiplicity.

As remarked above, the tangent plane Π is unique. We prove this here under

the a priori assumption that M is outer-stable (see the discussion above for

proofs that avoid this assumption). We need the following:

Exercise 13. Suppose that Q(φ) =
∫
M
|∇φ|2 − V φ2 has index(Q) = 0. Sup-

pose that ∆u+V u = 0. Show that no connected component of {u ̸= 0} can be

compact. (If you want to be completely correct, you need to concern yourself

with the fact that a connected component of {u ̸= 0} need not be particularly

regular; see e.g. [BM82].)

Proposition B.1 ([Tys89, Lemma 3]). If M is outer-stable then the tangent

plane at infinity is unique.

Proof. We can consider a fixed end, in which case the limit to the tangent

planes occurs with multiplicity one. Suppose that Π1 ̸= Π2 are distinct tangent
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planes at infinity. Assume both planes have unit vectors ν1, ν2 chosen to agree

with the blow-down limit. Choose a unit vector v so that ν1 · v > 0 and

ν2 · v < 0. Then, u = ν · v will be a Jacobi field on M , namely it will solve

∆u + |A|2u = 0. On the other hand, by construction, we see that u > 0 on

λΠ1
k M ∩ (B2 \ B1) and u < 0 on λΠ2

k M ∩ (B2 \ B1) for k ≫ 0, where λΠi
k is

the blow-down scale associated to Πi. Thus, we see that {u ̸= 0} contains

infinitely many compact components. This contradicts Exercise 13. □
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[LR89] Francisco J. López and Antonio Ros, Complete minimal surfaces with index one

and stable constant mean curvature surfaces, Comment. Math. Helv. 64 (1989),

no. 1, 34–43. MR 982560 (90b:53006)

[LR91] , On embedded complete minimal surfaces of genus zero, J. Differential

Geom. 33 (1991), no. 1, 293–300. MR 1085145 (91k:53019)

[LW02] Peter Li and Jiaping Wang, Minimal hypersurfaces with finite index, Math. Res.

Lett. 9 (2002), no. 1, 95–103. MR 1892316

https://arxiv.org/abs/1605.09693


30 OTIS CHODOSH

[LY83] Peter Li and Shing Tung Yau, On the Schrödinger equation and the eigenvalue

problem, Comm. Math. Phys. 88 (1983), no. 3, 309–318. MR 701919

[Mor09] Filippo Morabito, Index and nullity of the Gauss map of the Costa-Hoffman-

Meeks surfaces, Indiana Univ. Math. J. 58 (2009), no. 2, 677–707. MR 2514384

[MR91] Sebastián Montiel and Antonio Ros, Schrödinger operators associated to a

holomorphic map, Global differential geometry and global analysis (Berlin,

1990), Lecture Notes in Math., vol. 1481, Springer, Berlin, 1991, pp. 147–174.

MR 1178529

[MS73] James H. Michael and Leon M. Simon, Sobolev and mean-value inequalities on

generalized submanifolds of Rn, Comm. Pure Appl. Math. 26 (1973), 361–379.

[Nay93] Shin Nayatani, Morse index and Gauss maps of complete minimal surfaces

in Euclidean 3-space, Comment. Math. Helv. 68 (1993), no. 4, 511–537.

MR 1241471 (95b:58039)

[Oss64] Robert Osserman, Global properties of minimal surfaces in E3 and En, Ann. of

Math. (2) 80 (1964), 340–364. MR 0179701 (31 #3946)

[Oss69] , A survey of minimal surfaces, Van Nostrand Reinhold Co., New York-

London-Melbourne, 1969. MR 256278

[Pog81] Aleksei V. Pogorelov, On the stability of minimal surfaces, Dokl. Akad. Nauk

SSSR 260 (1981), no. 2, 293–295. MR 630142 (83b:49043)

[Ros06] Antonio Ros, One-sided complete stable minimal surfaces, J. Differential Geom.

74 (2006), no. 1, 69–92. MR 2260928 (2007g:53008)

[Sch83] Richard M. Schoen, Uniqueness, symmetry, and embeddedness of minimal sur-

faces, J. Differential Geom. 18 (1983), no. 4, 791–809 (1984). MR 730928

(85f:53011)

[Sim67] James Simons, Minimal cones, Plateau’s problem, and the Bernstein conjecture,

Proc. Nat. Acad. Sci. U.S.A. 58 (1967), 410–411.

[Sim83] Leon Simon, Lectures on geometric measure theory, Proceedings of the Cen-

tre for Mathematical Analysis, Australian National University, vol. 3, Aus-

tralian National University, Centre for Mathematical Analysis, Canberra, 1983.

MR 756417

[SS81a] Richard Schoen and Leon Simon, Regularity of stable minimal hypersurfaces,

Comm. Pure Appl. Math. 34 (1981), no. 6, 741–797.

[SS81b] , Regularity of stable minimal hypersurfaces, Comm. Pure Appl. Math.

34 (1981), no. 6, 741–797. MR 634285 (82k:49054)

[SSY75] Richard Schoen, Leon Simon, and Shing-Tung Yau, Curvature estimates for

minimal hypersurfaces, Acta Math. 134 (1975), no. 3-4, 275–288.

[ST89] K. Shiohama and M. Tanaka, An isoperimetric problem for infinitely connected

complete open surfaces, Geometry of manifolds (Matsumoto, 1988), Perspect.

Math., vol. 8, Academic Press, Boston, MA, 1989, pp. 317–343. MR 1040533



THE MORSE INDEX OF A MINIMAL SURFACE 31

[ST93] Katsuhiro Shiohama and Minoru Tanaka, The length function of geodesic parallel

circles, Progress in differential geometry, Adv. Stud. Pure Math., vol. 22, Math.

Soc. Japan, Tokyo, 1993, pp. 299–308. MR 1274955

[SY79] R. Schoen and Shing Tung Yau, Existence of incompressible minimal surfaces

and the topology of three-dimensional manifolds with nonnegative scalar curva-

ture, Ann. of Math. (2) 110 (1979), no. 1, 127–142. MR 541332

[SY96] Ying Shen and Rugang Ye, On stable minimal surfaces in manifolds of positive

bi-Ricci curvatures, Duke Math. J. 85 (1996), no. 1, 109–116. MR 1412440

[Tra02] Martin Traizet, An embedded minimal surface with no symmetries, J. Differential

Geom. 60 (2002), no. 1, 103–153. MR 1924593 (2004c:53008)

[Tra04] , A balancing condition for weak limits of families of minimal surfaces,

Comment. Math. Helv. 79 (2004), no. 4, 798–825. MR 2099123 (2005g:53017)

[Tuz91] A. A. Tuzhilin, Morse-type indices for two-dimensional minimal surfaces in R3

and H3, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), no. 3, 581–607. MR 1129827

[Tys87] Johan Tysk, Eigenvalue estimates with applications to minimal surfaces, Pacific

J. Math. 128 (1987), no. 2, 361–366. MR 888524 (88i:53102)

[Tys89] , Finiteness of index and total scalar curvature for minimal hypersurfaces,

Proc. Amer. Math. Soc. 105 (1989), no. 2, 429–435. MR 946639 (89g:53093)

[Whi87a] Brian White, Complete surfaces of finite total curvature, J. Differential Geom.

26 (1987), no. 2, 315–326. MR 906393

[Whi87b] , Curvature estimates and compactness theorems in 3-manifolds for sur-

faces that are stationary for parametric elliptic functionals, Invent. Math. 88

(1987), no. 2, 243–256. MR 880951 (88g:58037)

[Whi13] , Minimal surface lecture notes (Math 258), https://web.stanford.e

du/~ochodosh/MinSurfNotes.pdf (2013).

[Whi18] , On the compactness theorem for embedded minimal surfaces in 3-

manifolds with locally bounded area and genus, Comm. Anal. Geom. 26 (2018),

no. 3, 659–678. MR 3844118

[Xu23] Kai Xu, Dimension Constraints in Some Problems Involving Intermediate Cur-

vature, arXiv e-prints (2023), arXiv:2301.02730.

https://web.stanford.edu/~ochodosh/MinSurfNotes.pdf
https://web.stanford.edu/~ochodosh/MinSurfNotes.pdf
https://arxiv.org/abs/2301.02730

	1. First and second variation of area
	2. Qualitative properties of the Morse index
	3. Finite total curvature
	3.1. Conformal properties
	3.2. The CLR inequality

	4. Examples
	5. Classification results and conjectures
	5.1. Surfaces in 3-dimensions
	5.2. Ros's harmonic 1-form method
	5.3. Higher dimensions

	6. Finite index implies finite total curvature (Theorem 2.1)
	6.1. Finite topology
	6.2. Area-controlled exhaustion

	7. The Gulliver–Lawson conformal metric
	7.1. -bubbles
	7.2. The area-controlled exhaustion property
	7.3. Bi-Ricci curvature

	Appendix A. Structure of finite total curvature minimal hypersurfaces (Theorem 3.1)
	Appendix B. Planar tangent cones are unique (Tysk's verison)
	References

