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2 OTIS CHODOSH

These are my notes for lectures given at University College London in
the summer of 2023. Many thanks to Costante Bellettini as well as the
audience for making this possible. A complete discussion of most of the
results included here can be found in [Giu84) [Sim83, Mag12].

1. MINIMAL GRAPHS
For Q € R"! and u € C*() it’s well-known that the area of the graph
graph(u) = {(z,u(z)) : z € Q}

Ao(u) = /Q VI VP

Suppose that u is a critical point of Aq among variations fixing the bound-
ary, namely %|t:0AQ<U +tp) =0 for all ¢ € C2°(£2). This is equivalent to
u solving the minimal surface equation (MSE):

of u is given by

) Vu B
(1) div (W) =0

Geometrically, the MSE says that graph u has vanishing mean curvature.

It is a useful analogy to consider the MSE as a non-linear (quasi-linear)
version of the Laplace equation Au = 0 (as we would have derived if we
started from the Dirichlet energy Eq(u) = [, [Vul?).

The next result is an analogue of the fact that harmonic functions mini-
mize the Dirichlet energy on compact sets. We say that M"™ C R"*! propely
embedded minimizes area on compact sets if ¥ € M is compact smooth
embedded then |Z| < [2| for any compact oriented hypersurface 3 ¢ R™
with 0% = 9.

Theorem 1. Suppose that u solves the MSE. Then, graph(u) C R"™!
minimizes area on compact sets.

Proof. The vector field
(_vu> 1)
V14 |Vul?
on R""! is a “calibration.” Namely, div X =0, |X| < 1and X-v = 1 along
graph u. Thus, if 3 has 93 = 9T then the divergence theorem implies that

|2|=/X.y:/x-ag\2\.
) )

This completes the proof. O

Alternative proof. Suppose that 5 has least area among all hypersurfaces
with 9% = 9. (We'll see later that 3 exists as long as we allow a small sin-
gular set.) Touch ¥ from above/below by vertical translations of graph(u).
The contact does not occur at the boundary, and thus violates the strong
maximum principle (see Theorem [5| below). d
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Continuing with the analogy with harmonic functions, we have the fol-
lowing analogue of the Liouville theorem (a bounded harmonic function on
R™ is constant) proven by Sergei Bernstein in the 1910’s:

Theorem 2 (Bernstein). If u € Ci2(R?) solves the MSE then u(z,y) =
ax + by + c s affine.

Remark 3. No boundedness assumption on u is required (compare with
the harmonic function e®siny on R?).

A natural question is whether or not entire (defined on R™) solutions
to the MSE are affine when n > 3. This became known as the Bernstein
problem. As we will see later, the answer is surprising: entire solutions to
the MSE on R" are affine for 2 < n < 7 while counterexamples exist for
n > 8. We'll discuss this more later.

2. LIMITS OF MINIMIZERS

The Bernstein problem leads us to the study of M"™ C R™™ (prop-
erly embedded) area minimizing on compact sets (generalizing from M =

graph(u)).
Lemma 4 (Area bound for minimizers). If M is connected)] then
|M N B,(x)] <Cr"
for C = C(n).
Proof. Since M is properly embedded, we can find £ C R"! open with
OF = M. We can assume that M intersects 0B, (x) transversally. Then,
> =0B,(x)NE
has 8% = 9(M N B,(x)) and || < |8B,(x)| < Cr™. Thus, the assertion
follows from the area-minimizing property of M. U

Thus, if M}, is a sequence of connected minimizers then we can pass the
area-measures
pn, () = [ My N Q2
to a weak (subsequential) limit pp;, — p. The measure o does not fully
encode the minimizing property of the M}, so one should also pass the open
sets By with OF, = My to a Li . limit E. The measure p is “compatible”
with the set E in the sense of the divergence theorem:

(2) 1(2) = sup {/ div X :supp X € Q, | X]| < 1} = P(E;Q).
E

The fact that P(F;Q) < oo for 2 precompact is the definition of E being
a Caccioppoli set. We call i the boundary measure of E and note that one

ISince we are considering the oriented theory, the connected assumption is crucial
here. For example, R? x Z C R3 can be seen to minimize (among oriented competitors)
on compact sets but has volume growth in balls of order O(r3).
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can show that E is minimizing in the sense that P(F;Q) > P(E;Q) for

FAFE € Q.
See e.g. [Giu84, Magl2] for a complete treatment of Caccioppoli sets.

Exercise 1. Prove the > direction of . (This doesn’t need the M
to be minimizers.) Find an example of non-minimizing hypersurfaces Mj,
limiting to p and E as above, but with < in ([2)).

Now that we’'ve defined minimizing Caccioppoli sets we can explicitly
state the strong maximum principle.

Theorem 5 (Simon [Sim87]). If Q0 C Qy are minimizing Caccioppoli sets
then their boundary measures have either supp iy Nsupp ps = 0 or py = ps
and 21 = Qqy up to a set of measure zero.

We’ll discuss this more later.

Exercise 2. Prove Theorem [3]if 0€); are smooth connected hypersurfaces.
Hint: Near a point of contact, 0€2;, 0€2y will both be the graphs of smooth
solutions uy, us to the MSE (over the same tangent plane). Using Taylor’s
theorem, prove that us — u; satisfies an elliptic PDE and thus conclude
that 0€); agrees with 0€)y locally. Finish by extending this to a global
statement.

3. THE SIMONS CONE

Define the Simons cone (see [Sim68]) by
C={(x,y) eR* x R*: |x| = |y|} C R®.

Note that (i) C is dilation invariant AC = C (this is why we call C a cone)
and (ii) C is not a smooth hypersurface at the origin.

The area measure on C is the boundary measure of the Caccioppoli set
E :={|x| > |y|} but we won’t be too precise about this below.

Theorem 6 (Bombieri-De Giorgi-Giusti [BDGGE9]). There’s S C R™ 1\
C smooth star-shaped area-minimizing so that \™1S limits to C as A — oo.
In particular C is area-minimizing on compact sets.

Proof. ODE methods yield a smooth star-shaped O(4) x O(4) minimal
hypersurface S € R*™ \ C. If ¥ € S did not minimize area, then we
could touch the minimizer 3 by dilations AS. Star-shapedness guarantees
interior contact, a contradiction. The same argument proves that C is area-
minimizing, or we can observe that A~'S limits to C and use the results
asserted above. U

Exercise 3. Let E C R? be {(z,y) € R?: |z| < |y|}. Prove that E is not
minimizing.
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4. THE PLATEAU PROBLEM

In the alternative proof of Theorem [I| (minimal graphs minimize area)
and the proof of Theorem [6] (the Simons cone is minimzing), we referenced
minimization with fixed boundary. We pause to discuss this more pre-
cisely (we’ll return to this later). Consider I'"™~! C R""! a smooth, closed.
oriented, embedded submanifold. For simplicity here we will assume that
I' C 0B4(0) is connected but neither of these assumptions are necessary
(cf. [HST9, Whi83, [CMS23al, [CMS23b]). Choose a smooth Caccioppoli set
F Cc R so that F N dB;(0) =T is a transversal intersection.

Theorem 7. There exists a Caccioppoli set E with P(E; B2(0)) minimal
among all sets with EAF C By(0).

For 1 the boundary measure of F, let reg i denote the set of points where
 is the area measure of a smooth hypersurface and sing u = supp u \ reg p.

Example 8. If u is the area measure for the Simons cone C then regpu =

C \ {0} and sing u = {0}.

We'll later give most of the details for the following classical result. In
fact, we’ll discuss improvements [HS85, [CMS23al, [CMS23b| of the estimate
in Theorem [J] for generic boundary data I'.

Theorem 9 (Regularity of solution to Plateau problem, Federer [Fed70],
Allard [AII75), Hardt—Simon [HS79]). Let pu denote the boundary measure of
. Then the Hausdorff dimension of sing u satisfies dimg singu < n — 7.
In particular when n+ 1 € {2,...,7}, there is a smooth solution to the
Plateau problem.

We also note that p is always completely regular near I'. We will not
discuss this further (although it is very important in the proof of Lemma

below).

5. MONOTONICITY FORMULA

Suppose that M™ C R**! minimizes area on compact sets. Define the
density ratio

On(x,r) = OB

Wpr™

The following result is a key tool used in the study of area-minimizers.

Theorem 10 (Monotonicity). The density ratio r — Oy (x,7) is non-
decreasing.

Proof. The co-area formula gives

d
12N B,(x)] 2 [£N B, ()|
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The cone at x over ¥ NJB,(x) has area Z|XNJB,(x)| and is a competitor
for |X N B,(x)], so

d
§|2 NB,(x)| <[£NIB.(x)| < —[£N B,(x).

Integrating this yields the monotonicity formula. U

One can check that the monotonicity formula continues to hold even for
the boundary measure p of a minimizing Caccioppoli set. In particular, on
a minimizing cone C we have ©¢(0,r) constant. The converse holds as is
seen by examining the case of equality above.

Theorem 11. If r — ©,(x,7) is constant for all v > 0 then p is a cone
at X.

Note that the monotonicity formula allows us to define the local density
O,(x) = 7lnl_r>r(1) O,(x,7).

Exercise 4. If x € regp then 0,(x) = 1.

Proposition 12 (Upper semi-continuity of density). If up — p and x, — x
then
O,(x) > limsup O, (xx).
k—ro0
Proof. For a.e. r > 0 we have that ©,, (xx,7) — ©,(x,7). Thus, mono-
tonicity yields
O,(x,7r) > limsup ©,, (x).

k—o0

Sending r — 0 finishes the proof. O
Exercise 5. Check explicitly that Proposition[I2|holds for the Simons cone
C.

6. TANGENT CONE AT INFINITY

Suppose that M™ C R"*! is smooth, connected, and minimizes area on
compact sets. We saw the a priori estimate Oy (x,r) < C = C(n) in
Lemma [d] Thus, monotonicity implies that

Op(00) := lim Oy (x,7)
T—00
exists.
Exercise 6. Check that the value of the limit is independent of x.

We can use this to extract information about M at large scales as follows.
Choose a sequence A\, — 0o so that M, := A,;lM has a weak subsequential
limit p. Thanks to the scale-invariance of the area-ratio, we see that

©,(0,7) = khﬁnolo O, (0,7) = O (0, \r) = Opr(00).

Thus ©,(0,r) is independent of r and thus p is the area-measure of an
area-minimizing cone C. We call C a tangent cone to M at infinity.
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Example 13. The surfaces S described in Theorem [6] have tangent cone
C the Simons cone at infinity.

Remark 14. Although it will not be relevant here, we emphasize that in
general, the cone C could a priori depend on the sequence \,. Proving
uniqueness of tangent cones is a major open problem in the area and has
only been achieved in certain special cases [AASI] [Sim08), [Sim93|, [Szé20].

Theorem 15. If M has a tangent cone at infinity given by a hyperplane
R"™ C R then M is itself a hyperplane.

Proof. We have ©,/(c0) = 1. Assume that 0 € M. Note that
}}_}I% @M(O, 7“) =1

since M is smooth and thus flat on small scales. Thus, ©,,(0,7) = 1 for
all » > 0, so M is a cone. In particular, M agrees with any tangent cone
at infinity. O

7. INFINITESIMAL TANGENT CONES

If 1 is a boundary measure of a Caccioppoli set and x € supp u, we can
argue by analogy with the previous argument and subsequentially blow-up
(instead of blow-down) p at x to find a tangent cone C with ©(C) = 0,(x).
The analogue of Theorem [15]is much more difficult to prove in this setting,
since we do not assume any a prior: regularity of u.

Theorem 16 (De Giorgi [DG61]). If x € supp p has ©,(x) < 1+ ¢, then
X € reg .

See e.g., [Giu84. [Sim8&3] for the proof.
Combined with upper-semicontinuity of density we have

Corollary 17 (Singular points don’t limit to smooth points). If p, — p
and Supp U O X — X € reg i then X € reg uy for k large.

Corollary 18. regu C supp u is relatively open.

8. CONE SPLITTING

Suppose C C R™"! is a non-flat cone. Then 0 € singC. The Simons
cone shows that this might be the only singular point. However, if x €
singC \ {0} then we can take an iterated tangent cone at x. (This idea was
introduced by Federer [Fed69, [Fed70].)

Proposition 19. Any iterated tangent cone at x splits as RxC' for C' C R™
MINIMIZING cone.

Proof. Dilation around O preserves C and looks like translation in the x
direction near x. Thus, the iterated tangent cone will be invariant in the
x direction. U

Exercise 7. Show that R x C’ is minimizing if and only if C’ is.
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We can iterate this until we find a cone C¥ ¢ R*! with singC = {0}.
Alternatively, we can use this to gain information about a cone C with
potentially large singular set. We set

spineC := {O¢(x) = O(C)}.

Proposition 20 (Cone splitting). The set spineC is a linear subspace and
the cone splits as C = (spineC) x C for C C (spineC)*.

Proof. If x € spineC \ {0} then the monotonicity formula at x holds with
equality at all scales. Thus C is conical around x, so C agrees with its

tangent cone at x which splits a line in the x direction by Proposition [19}
[terating this proves the assertion. U

Recall that by Exercise |3| the cross in R? isn’t minimizing. In fact, this
holds for any non-flat cone in R? (with basically the same proof). This
leads to the following result (used in several places in the sequel).

Corollary 21. If u is the boundary measure of a minimizing Caccioppoli
set then reg u C supp p is connected and dense.

Proof. Since singular points limit to singular points, if x is in the interior
of sing 1 then any tangent cone at x has no regular points. This holds for
iterated tangent cones until we get to R~ x C!. But C' is a flat line in R2,
contradiction. Connectedness follows from a similar argument but requires
a bit more care. See [[Im96, Theorem A(ii)] for a proof in a much more
general setting. O

9. BERNSTEIN’S PROBLEM AND MINIMIZING CONES

Theorem 22 (Fleming [Fle62], Almgren [Alm66|, Simons [Sim68|). For
2 <n+1<7ifC* C R is a minimizing cone then C is a flat hyperplane.

The previous section proves this is valid for n 41 = 2 and that it suffices
to prove Theorem 22| for C with singC = {0}. We'll discuss ingredients
of the proof of this later, but for now we’ll content ourselves with several
important consequences.

Corollary 23. IfC" C R® is a minimizing cone then singC C {0}.

Proof. Otherwise an iterated tangent cone would split as R x C’ for ' C R”
non-flat. ]

Corollary 24. For C* C R"" non-flat minimizing, dimspineC < n — 7

Proof. We saw that C = (spineC) x C’ for C' C (spineC)*. Since C’' cannot
be flat we get

8 < dim(spineC)L =n+ 1— dimspineC.
This proves the assertion. U

Corollary 25 (Bernstein theorem for minimizers). For 2 <n+1 <7, if
M™ C R minimizes area on compact sets then M is a flat hyperplane.
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The dimension restriction in Theorem [22] and Corollary [25] is sharp as
shown by the surface S from Theorem [0 In particular, we have resolved
most of the “affirmative” dimensions for the original Bernstein problem:

Corollary 26 (Bernstein theorem). For 2 < n < 6 if u solves the MSE on
R"™ then it’s affine.

10. DE GIORGI’S SPLITTING THEOREM

We're just missing n = 7 from the “affirmative” direction.

Theorem 27 (De Giorgi [DG65)]). Let u solve the MSE on R™ and M™ =
graph(u) C R"™ be the corresponding minimizing graph. Any tangent cone
at infinity of M splits as C' x R.

Corollary 28. If u solves the MSE on R” therﬂ it’s affine.

Remark 29. The non-flat solution to the MSE on R® constructed by
Bombieri-De Giorgi—Giusti has precisely Simons cone X R as its tangent
cone at infinity.

Proof of Theorem[27. Let A\, — oo so that A, 'M converges to the fixed
tangent cone C. Since M is a graph, M + A\pe,.; is disjoint from M.
Rescaling, A\, ' M + e, is disjoint from A\;'M. Passing this to the limit,
we find that C lies weakly to one side of C + €,,41.

The strong maximum principle (Theorem |5|) thus implies that either (i)
C+eni1 = Cor (ii) C+e,qq is disjoint from C. In case (i) we thus conclude
that C + Aepy1 = C for all A € R (since C is invariant under dilation)
proving that C is invariant in the e,;; direction. To handle case (ii) we
need Proposition [30] below. O

Proposition 30 (No non-flat graphical cones). If C* C R™ is a mini-
mazing cone so that C + e,1 is disjoint from C then C is a flat plane.

Note that the dilation invariance of C shows that the assumptions in
Proposition [30] imply that C + Ae,y; is disjoint from C for all A # 0.
As such, we can regard this as a generalized Bernstein theorem (holding
in all dimensions). Proposition will follow from Jacobi field analysis
as discussed later, but intuitively, the reason this should be true is that
elliptic regularity should not allow a solution to the MSE to have a cone-
type singularity.ﬂ

Remark 31. We compare Proposition [30| with the corresponding fact for
mean curvature flow. The analogue of minimizing cone is the space-time
track of a shrinker flowing by dilation. In contrast with Proposition it’s
easy to see that the shrinking sphere centered at (0,0) and the shrinking

2Strictly speaking, when De Giorgi proved Theorem minimizing cones were known
to be flat in R* by [AIm66] (the Simons [Sim68] classification was not yet known); as
such, at the time Theorem [27| resolved the flatness of minimal graphs over R3.

3See [Giu84, Theorem 16.9] for a proof along these lines.
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sphere centered at (0,t) generate disjoint space-time tracks; in fact, up
to crossing with R¥ these are the only smooth shrinkers that exhibit this
phenomenon. This has the consequence that spherical (and more generally
cylindrical) singularities are “generic.” See [CM12, [CCMS20, [CCMS21],
CCS23].

11. ONE SIDED IMPROVEMENT A LA HARDT-SIMON

Since we would like to prove a generic regularity result, it’s crucial to
have an improvement mechanism near a singularity (modeled on a cone).
We’ll see how to prove such a result out of Proposition

The strongest possible such result is as follows:

Theorem 32 (Existence of the foliation; Hardt-Simon [HS85], Wang [Wan22]).
If C" C R™™ is a minimizing cone then writing R"™\ C = U, UU_, there
exists Sy C Ux smooth star-shaped minimizing hypersurface so that \™1S.
limits to C as A\ — o0.

Remark 33. When C is the Simons cone then S is the same (up to scaling)
as the S described in Theorem [6l

Note that the star-shaped condition guarantees that {\S} foliates R"*?
(taking S =8,, -8 =5_,08 =C, etc).

Theorem 34 (Uniqueness of the foliation; Hardt—Simon [HS85]). IfsingC" =
{0} then the boundary measure p to a minimizing Caccioppoli set with
supp u C Uy agrees with AS+ for some A > 0.

Remark 35. When singC is larger than just 0, the uniqueness result in
Theorem |34]is widely open. Some partial progress has been achieved in the
case of certain cylindrical cones R* x C [Sim21], [ES23].

We’ll prove a replacement for Theorem [34] that is weaker, but holds for
all cones. A key ingredient is the nonexistence of graphical cones result

(Proposition [30).

Theorem 36 (Hardt-Simon replacement [CMS23al Lemma 3.1]). For~y >
0 there’sn = n(y,n) > 0 so that if C* C R™ is a non-flat minimizing cone
then there’s an < (n — 7)-dimensional linear subspace 11 so that if p is the
boundary measure of a minimizing Caccioppoli set with supp pNsuppC = ()
and x € supp N B1(0) with

@M(X) Z G(C) -1
then x € U, (1I).

Note that if Theorem [34] is known for C, then this result is trivial since
sing u = () and if C is non-flat then ©(C) > 1 +¢,, (by De Giorgi regularity

Theorem .
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Proof. Suppose there’s a sequence of cones C; for which the theorem fails

for n = k~!. Passing to a subsequence C;, — C with C non-flat (since

0 € singC;). Let IT = spineC. (By Corollary 24] indeed dimIT < n —7.)
By assumption there’s py and xj € supp px N B1(0) with

0, (x1) = O(C) — k!

but x;, ¢ U,(II). Passing to a further subsequence, p, — pu, X5 — X.
Density upper semi-continuity yields

(3) 0,.(x) > 6(0).
Since u lies weakly to one side of C, the strong maximum principle either
yields p = C, in which case this implies that x € spineC = II (contradic-
tion) or u lies strictly to one side.

Now, consider C a tangent cone to i at infinity. Note that C lies weakly

to one-side of C but both cones contain 0. Thus, C = C by the strong
maximum principle. Combined with and monotonicity, we find that

0(C) < 0,(x) < 0,(x,00) = O(C) = O(C).

Thus, 4 is conical around x and thus agrees with its tangent cone at infinity,
C. This shows that C 4+ x is disjoint from C. The graphical cones result
(Proposition implies that C is flat, a contradiction. U

12. HAUSDORFF DIMENSION

We recall here the Hausdorff dimension and measure. For A C R"*!
a >0, and 0 € (0, 00] we define

H;i(A) := w;inf {Zr?‘ iy <0,AC U Brj(xj)}

J=1 Jj=1

and then (since § — H3(A) is non-decreasing) we define the Hausdorff
measure

H(A) = [lsin(l) Hi(A).
—
(It’s easy to see that H3 isn’t Borel regular, while #® is.) Finally we define
the Hausdorff dimension by

dimy A = inf{s € [0,00) : H*(A) = 0}.
Lemma 37. H*(A) = 0 if and only if H: (A) = 0.

Proof. Since HZ (A) < H*(A) we can assume that H3 (A) = 0. Thus,
for e > 0 there’s A C U2, By, (x;) with 3772 7% < e. We thus have

Jj=1"J
r; < e/ =o0(1) as e — 0. [
Lemma 38. If A C R"™ is bounded then
s (AN B,
lim sup ool () >27% >0
r—0 wSTS

for H?-a.e. x € A.
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Proof. For p > 0 let A, denote the points x € A with
Hi (AN B, (x)) < (1—p)2 wer®
for all r € (0, p). It suffices to show that H5(A,) =0 for all §, p > 0.

Consider any cover A, C ;2 By, (x;) with 7; < é. For each j, choose
y; € A,NB,,;(x;) (otherwise we could discard this ball). Then, noting that

Ap N BT.]. (Xj) C Ap N B2rj (Yj)v
we have

Hf&(Ap N B”'j (Xj)) < HZo(Ap N Brj (Xj)) < Hio(Ap N B2r]- <Yj)) <(1- P)WST;-
The first inequality follows since r; < § so any cover of A, N B,,(x) can be
replaced by balls of radius < 6. The second follows from choice of y;. The
third follows by definition of A,. Summing in j and taking the infimum

over covers we get
H5(A) < (1= p)H3(Ap).
Thus Hj(A,) = 0. This completes the proof. O

We can now use this to prove an estimate for the singular set of a “foli-
ation” by solutions to the Plateau problem.

Theorem 39 (Dimension of singular set of a family [CMS23bl). Suppose
that F is a family of minimizing boundaries in By(0) C R™™ with pairwise
disjoint support. Let S := U,czsingu. Then dimg S <n —7.

Note that this immediately implies the regularity of a single solution to
the Plateau problem (Theorem|[J)) by taking .# = {u}. The proof is similar,
but differs in a mild way as compared to the “standard” proof of Theorem
9] (cf. [Sim83, Appendix A] and [Whi97]).

Proof. Suppose that n — 7 < s < dimg sing u. Choose v = y(n,s) > 0
sufficiently small so that
(4) HE (Upy (R™7 x {0}) N B1(0)) < w2757

For 7 =0,1,... set
S(j)={x€S:1+n<0,x) <1+ (j+1)n}

By assumption, there’s some j so that H*(S(j)) > 0. Thus, we see that
there must be x € S§(j) and A\, — oo so that

(5) Tim AH(S(7) N By (%)) = w27 > 0.

Set px = A, (1 — x) and pass to a subsequence so that px — C a (non-
flat) tangent cone. Fix n,II as in Theorem [36] (for v as above). If y; €
A H(S(5) —x) N B1(0) then yy, € supp fii, for some rescaled boundary mea-
sure fiy € A\, (& — x). We thus have

O, (Vi) = 141> 0,(x) —n
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so passing to a subsequential limit
©u(y) =2 0(C) —n.

By Theorem 36, we see that y € U,(IT). From this we find that for &
sufficiently large,

Ne ' (S(7) = %) N B1(0) € Uy (1),
and thus
H (AL H(S() = %) N Bi(0)) S w277
by . This contradicts . O

Exercise 8. Consider n +1 = 8. If p is the boundary of a minimizing
Caccioppoli set show that sing u is discrete. Assuming the result from
Theorem [34] prove the same thing for the singular set of a pairwise disjoint
family .% in RS.

13. GENERIC REGULARITY

We now turn to the main result of these notes.

Theorem 40 ([CMS23al, [CMS23D]). Fiz 't c 9B,(0) C R**! smooth,
closed oriented. There’s a small perturbation T C 9B(0) C R™™! so that
any solution to the Plateau problem E’ for I has boundary measure with
dimpg sing p < n—9. In particular when n+1 € {8,9,10}, there is a smooth
solution to the Plateau problem.

We now relate Theorem [40| to the results in the previous section. Con-
sider {I's}sj<s C 0B1(0) a unit speed foliation. Let .# denote the set of all
solutions to the Plateau problem for I'y for some s € (=4, 6).

Lemma 41. If p # i/ € F then supp pNsupp p/ N B1(0) = ().

(If the minimizers for I'y are non-unique, then there will be two minimiz-
ers but they will only intersect at I's.)

Sketch of the proof. Using the Hopf boundary lemma and smoothness near
I’y we see that supp u N supp p/ occurs strictly away from the boundary.
We can now use a “cut-and-paste” argument to produce a new minimizer
with a (n — 1)-dimensional singular set. This is a contradiction. O

Thus, by Theorem [39] the singular set of the foliation satisfies dimy sing S
n—7. Let § : supp F — (—0,0) map x € supp x4 to the unique s so that
w1 is the solution to the Plateau problem for I'y. Recalling that S is the
singular set of the elements of .%, to prove Theorem [A0] it suffices to prove
that §(S) # (—0,0).

To explain how to this, we first define

©) Aty (CET

Note that x, € (1,2]. For example k; = 2, kg ~ 1.59. In general, x,
decreases towards 1 as n — oo.

<
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Theorem 42. s|s is a-holder for any o < Kk, + 1.

Theorem thus follows by combining dimyg S < n — 7, Theorem (42|
and the following result:

Proposition 43 (cf. [FROS20, Corollary 7.8]). Consider A C R™™ with
dimy A <a and f: A — R a-Hélder. Then

o I[fa<« then H'(f(A)) =0.
e Ifa >« then for H'-a.e. s € R we have dimy(f~!(s)) <a — a.

Exercise 9. Prove Proposition 43|

14. JACOBI FIELDS

Definition 44. Let M be smooth with vanishing mean curvature H = 0.
A Jacobi field on M is u € C2.(M) solving

loc

(7) Apru + | Ay *u = 0.

The Jacobi equation is the linearization of the (geometric) minimal
surface equation H = 0. In particular:

Proposition 45. If M, is a smooth family of hypersurfaces with H = 0
then the normal speed u at t = 0 satisfies the Jacobi equation.

For example, if M is a smooth (possibly incomplete) minimal hypersur-
face in R™*! then since M + te,,; is a smooth family, the normal speed
u = (ent1,V) is a Jacobi field.

Corollary 46. If C* C R"" is a minimal cone with C + e,1 disjoint
from C then up to changing the sign of the unit normal, uw = (€,41,V) is a
positive Jacobi field on regC.

Proof. Local considerations give u > 0. If u = 0 somewhere then the strong
maximum principle implies that the regular part (and thus all of C since
the regular part is dense) splits in the e, direction. Il

15. POSITIVE JACOBI FIELDS ON CONES

This motivates us to study positive Jacobi fields on minimizing cones
C™ C R™™!. Write M :=regC and let 3 = M N 9B;(0) denote the “link”
of the (regular part of the) cone.

Exercise 10. Show that X is a minimal surface in the sphere 0B;(0) if
and only if M, the cone over ¥, is a minimal surface in R"*!.

The Jacobi equation in “polar coordinates” becomes

Py n—10u 1
— — 4+ — (A As|?u) = 0.
or? + T 87’+r2( st + |Ax| u)
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Separation of variables thus suggests it’s useful to study the eigenvalue
problem for R C X

w(Q) ;= inf {/ |Vsul? — [Ag*u® 1 u € C(Q), ||ul|2 = 1} :
Q

Theorem 47 (Eigenvalue estimate for link; Simons [Sim68|). If singC =
{0} then u(X) < —(n —1). Equality holds only for generalized!| Simons
cones.

Sketch of the proof. The key is the Simons equation
2
(8) [As[As|As| + [As[! = —|V|As|]* + (n — 1)[As ],

Given this, taking u = |Ayx| in u(X) (and throwing away the gradient term)

we find
) / AP < —(n— 1) / Az,
> >

proving the desired inequality. The equality case follows by analyzing
Y"1 € 9B;(0) with |Ax| constant. O

Exercise 11. For singC = {0} set M = regC. Since C is minimizing,
it’s also stable: [, |Vyul* > [, [Ay|*u® for u € C(M). Assuming the
estimate from Theorem [47] prove Theorem [22]

In fact we need a uniform version of Theorem [47] that holds even when
C has a larger singular set.

Definition 48. For i the boundary measure of a minimizing Caccioppoli
set, and define the regularity scale r,(x) as follows. If x € sing i then set
ru(x) = 0. Otherwise x € regp denote the supremum of r > 0 so that
pN B,.(x) is smooth and has second fundamental form bounded |A] < r~1.

Exercise 12. If y, — p and x;, — x show that r,, (xx) — 7,(x).

We let R>,(p) := {x :r,(x) > p}. Note that R, is bounded away from
sing (.
Theorem 49 (Singular eigenvalue estimate; Simon [Sim08], Zhu [Zhul§],
Wang [Wan22]). There is py > 0 so that j1(R>2,,(C) N0B1(0)) < —(n—1).

Sketch of the proof. Using higher integrability estimates due to Schoen—
Simon—Yau [SSY75] one justifies taking |Ax| as a test function to prove

p(regCNoB(0)) < —(n—1).

In the case of equality, the same argument as before proves that C is a
generalized Simons cone, and thus singC = {0}. The assertion follows by
a compactness argument. U

4For appropriate p, ¢ the sets {g|x| = p|ly|} € R? x R? will also be minimizing cones.
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Proposition 50 (Integral estimate for positive Jacobi field on cone; Simon
[Sim08|, Wang [Wan22]). Suppose ¥’ C X is compact with possibly empty
smooth boundary and satisfy p(¥') < —(n—1). Let ¢ > 0 attain u(X'). If
u > 0 s a positive Jacobi field on regC then

V(r):= // o(w)u(rw)dw

satisfies
(V(r)r) <0

for K, defined in (6). i.e. =252 — \/@— (n—1).

Proof. We compute

r r2
n—1_, 1 9
=T 5 [ ulre) (B + 1A Pe) )
E/
1
+ —2/ u(rw)oyp(w)dw
T a3
n—1_, n—1
< - r 4 (T) - r2 V<T>

In the final step we used that ¢ is an eigenfunction of the operator on the
link, and also that u > 0 and the outwards normal derivative of ¢ is < 0
(since ¢ > 0 in the interior of 2). The proof is now finished by analyzing
the resulting ODE inequality. See Exercise [13| below. U

Exercise 13. Find 3,7 so that W(s) := V(s71/#)s7/# is convex. Using
this, finish the proof of Proposition

We now observe that Proposition |50| allows us to prove the no-graphical
cones result:

Proof of Proposition[30 If C + e, is disjoint from C then we’ve seen that
(€n41,V) is a positive Jacobi field on regC. Note that | (e,1,v)| < 1. For
Y, v as in Proposition 50| we thus have that

Vi(r) < / pw)dw =C
independent of . On the other hand,
r= V(1) < V(r)

so V(r) = oo as r — 0. O
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16. SEPARATION ESTIMATES

Jacobi fields can also be used to estimate the behavior of two very close
minimal hypersurfaces. Since the Jacobi equation is the linearization of the
mean curvature equation H = 0, Taylor’s theorem (and some geometric
considerations) yields

Proposition 51. If Y, S are smooth minimal hypersurfaces converging to
a common X in C;2(X) then the corresponding normal graphs u;, u; over
increasing regions of % satisfy

Asw; + [AsPwi = O(lwil ez (Jwil o2 + | i) o2)
for w; = 1; — ;.

In particular, when ¥; and &; are disjoint, so that w; > 0 we can use
the Harnack inequality (absorbing any second derivatives of w; into the
Laplacian) to pass w;(p)'w; to a Cf2-limit w, which will be a positive
Jacobi field on .

We fix po as in the singular eigenvalue estimate (Theorem .

Theorem 52 (Separation estimates near a cone). Fiz A € (0,k, + 1).
There’s A = A(\,n) > 1 with the following property. Suppose that €, C QO
15 a sequence of minimizing Caccioppoli sets whose boundary measures are
converging to some cone C. Then for k sufficiently large

. A=A .
d(R>apo(frr) N 0B A(0), supp fi) /A < Td(RZpo (p) N OB1(0), supp fi).

Proof. Suppose the estimate fails. Then, after writing pug, fix locally as
graphs over compact subsets of reg C we can take the difference of the graphs
and pass to the limit (using Proposition [51| and subsequent discussion) to
find a positive Jacobi field u on reg C with

A—1

9) inf w > inf w
R> 5, (C)NOB; (0) 2 R, (C)NOB4(0)

On the other hand, we can choose some R>s,, C X' € R,, NJB; and apply
the integral decay estimates (Proposition to find

/ (w)u(w)dw < A% / () Aw)do.
This trivially implies

inf u(w) < A™ sup u(Aw)
>/ sV

Since ¥’ € R,,(C) N 0B;1(0) we can apply the Harnack inequality to con-
clude that

(10) inf u< HA™ inf u
R o (C)N0B:1 (0) R g (C)NOB4(0)
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for some constant H (which one can check is uniform with respect to all
cones C via a compactness argument). Since A —1 < &, by assumption, by
taking A large we see that @D and cannot simultaneously hold. U

In particular, combined with the following exercise this proves the strong
maximum principle.

Exercise 14. For p4, ps as in Theorem [5| consider x € supp g1 N supp fo.
Show that to prove Theorem [5 via induction on dimension it suffices to
assume that for any A\, — oo, up to passing to a subsequence, A;l(ul —X)
and A\, '(us — x) converge to the same tangent cone. Hint: If not, then
there tangent cones C; # Cy lying weakly to one side. By rotating C,, we
can consider one sided contact at some point y € (C; NCy) \ {0}. Combine
cone splitting with the inductive hypothesis to conclude C; = Cs.

Proof of Theorem[J. Consider 0 € supp p1 N supp po. By Exercise [14] any
sequence of rescalings have a subsequence that converges to the same cone
C. We have that C # R™ since otherwise by De Giorgi’s theorem (Theorem
16)) 0 would be a smooth point and thus we could argue as in Exercise [2| to
see that reg iy = reg s locally. Using that the regular part is connected
open and dense (Corollaries [L§ and [21)).

We claim that there’s rq > 0 so that for r» < rg it holds that

d(RZATpo (111)NOB4,(0), supp po) /Ar < A_)\d(RZTpo (11)NOB,.(0), supp pa) /7

This follows by combining Theorem 52 with Exercise[14] Iterating this over
smaller scales, we find thatf]

A(R>ropo (111)NI B, (0), supp p2) /19 < C’r’\d(RZmO (111)NOB,(0), supp o) /7.

Since 1, o have the same tangent cones at 0 and A > 0 the left side is
o(1) as r — 0. Thus the right side vanishes, implying there was smooth
contact elsewhere. As above, this completes the proof. Il

A similar approach can be used to prove the Holder estimate (Theorem
42). The basic idea is to iterate the separation estimates to the scale
r = |x —y| for x,y € §. The complication, not present above, is that
one needs an estimate independent of the finitely many scales for which
the minimizers containing x and y will not look conical. Since there are
only finitely many, they do not present a major difficulty (see |[CMS23b,
Lemma 4.2]). In particular, after taking C' > 0 larger, we find that if
X € sing ju1,y € sing uo are sufficiently close then we still have

d(RZmpo (/ll)mﬁBro (O)a supp M2)/r0 < CT)\d(RZTpo (ﬂl)maBra))a supp NQ)/T‘

The right hand side is O(r~*) since d(-)/r is scale invariant. On the other
hand, the left-hand-side holds at a fixed scale independent of » — 0. Using
linear estimates and the fact that the foliation is unit speed at the boundary;,

SStrictly speaking the iteration only proves this for r = A~¥ry but this can be ex-
tended to all r < rg via Harnack.
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we find that the right hand side is comparable to |s(x) —s(y)|. This proves
that

[s(x) = s(y)| < Clx —y|*
for any A < K, + 1. This is precisely the estimate claimed in Theorem [42]

17. THE STABLE BERNSTEIN THEOREM

One way to weaken the hypothesis in the Bernstein theorem is to replace
minimizing with stability (minimizing to second order). A minimal (i.e.
mean curvature H = 0) hypersurface M C R"" is stable if [, |Vyul*> >
Joy [AuPu? for uw € C°(M) (see also Exercise .

A key distinction between stable minimal hypersurfaces and area-minimizers
is that stable hypersurfaces do not a priori satisfy the volume growth es-
timate |M N B.(0)] = O(r™) (cf. Lemma [4)). Because of this, the stable
Bernstein problem “if M™ C R""! is a complete stable minimal hypersur-
face, is it a flat plane?” is not fully resolved in all dimensions (clearly, the
non-flat area-minimizer in R® and beyond is also stable minimal, so this
problem is only new for R? through R”.

Theorem 53 (Fischer-Colbrie-Schoen [FCS80], do Carmo—Peng [dCP79],
Pogorelov [Pog81]). If M? C R? is a complete stable minimal hypersurface
then it’s a flat plane.

Theorem 54 (Chodosh-Li [CL21]). If M? C R* is a complete stable min-
imal hypersurface then it’s a flat plane.

(Later, alternative proofs were given in [CL23l [CMR22].)
In full generality, the stable Bernstein problem is still unresolved in
R5, RS, and R”. However, some important partial results are available:

Theorem 55 (Schoen—Simon—Yau [SSY75], Schoen—Simon [SS&1]). If M™ C
R™"! s a complete stable minimal hypersurface with |M N B,(0)| = O(r")
then it’s a flat plane for 3<n+1<7.

The same result for immersed M® in R” (as opposed to embedded) is not
solved (Theorem [55|for n+ 1 < 6, as well as Theorems and are valid

for immersions).

Exercise 15. Prove Theorem assuming quadratic area growth |M N
B,.(0)] = O(r?). Hint: try to use a cut-off function ¢ in stability adapted
to dyadic scales |x| € [2%, 28F1]. Verify that this gives a proof of Bernstein’s
classical theorem for minimal graphs over R? (Theorem .

A natural question is whether or not if M™ C R"*! is (connected) stable
minimal hypersurface then |M N B.(0)| = O(r™). It’s possible that this
estimate might even hold for n+1 > 8 (even when stability does not imply
flatness). On the other hand, the helicoid in R? has area growth O(r?),
so stability would be necessary for such a result. Estimates of the volume
growth in the R? R?* cases are known [Pog81], [CT.23)].
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