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These are my notes for lectures given at University College London in
the summer of 2023. Many thanks to Costante Bellettini as well as the
audience for making this possible. A complete discussion of most of the
results included here can be found in [Giu84, Sim83, Mag12].

1. Minimal graphs

For Ω ⋐ Rn+1 and u ∈ C∞(Ω) it’s well-known that the area of the graph

graph(u) = {(x, u(x)) : x ∈ Ω}
of u is given by

AΩ(u) :=

ˆ
Ω

√
1 + |∇u|2.

Suppose that u is a critical point of AΩ among variations fixing the bound-
ary, namely d

dt

∣∣
t=0

AΩ(u+ tφ) = 0 for all φ ∈ C∞
c (Ω). This is equivalent to

u solving the minimal surface equation (MSE):

(1) div

(
∇u√

1 + |∇u|2

)
= 0.

Geometrically, the MSE says that graphu has vanishing mean curvature.
It is a useful analogy to consider the MSE as a non-linear (quasi-linear)

version of the Laplace equation ∆u = 0 (as we would have derived if we
started from the Dirichlet energy EΩ(u) =

´
Ω
|∇u|2).

The next result is an analogue of the fact that harmonic functions mini-
mize the Dirichlet energy on compact sets. We say thatMn ⊂ Rn+1 propely
embedded minimizes area on compact sets if Σ ⋐ M is compact smooth
embedded then |Σ| ≤ |Σ̂| for any compact oriented hypersurface Σ̂ ⊂ Rn+1

with ∂Σ̂ = ∂Σ.

Theorem 1. Suppose that u solves the MSE. Then, graph(u) ⊂ Rn+1

minimizes area on compact sets.

Proof. The vector field

X =
(−∇u, 1)√
1 + |∇u|2

on Rn+1 is a “calibration.” Namely, divX = 0, |X| ≤ 1 and X ·ν = 1 along

graphu. Thus, if Σ̂ has ∂Σ̂ = ∂Σ then the divergence theorem implies that

|Σ| =
ˆ
Σ

X · ν =

ˆ
Σ̂

X · ν̂ ≤ |Σ̂|.

This completes the proof. □

Alternative proof. Suppose that Σ̂ has least area among all hypersurfaces
with ∂Σ̂ = ∂Σ. (We’ll see later that Σ̂ exists as long as we allow a small sin-

gular set.) Touch Σ̂ from above/below by vertical translations of graph(u).
The contact does not occur at the boundary, and thus violates the strong
maximum principle (see Theorem 5 below). □
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Continuing with the analogy with harmonic functions, we have the fol-
lowing analogue of the Liouville theorem (a bounded harmonic function on
Rn is constant) proven by Sergei Bernstein in the 1910’s:

Theorem 2 (Bernstein). If u ∈ C∞
loc(R2) solves the MSE then u(x, y) =

ax+ by + c is affine.

Remark 3. No boundedness assumption on u is required (compare with
the harmonic function ex sin y on R2).

A natural question is whether or not entire (defined on Rn) solutions
to the MSE are affine when n ≥ 3. This became known as the Bernstein
problem. As we will see later, the answer is surprising: entire solutions to
the MSE on Rn are affine for 2 ≤ n ≤ 7 while counterexamples exist for
n ≥ 8. We’ll discuss this more later.

2. Limits of minimizers

The Bernstein problem leads us to the study of Mn ⊂ Rn+1 (prop-
erly embedded) area minimizing on compact sets (generalizing from M =
graph(u)).

Lemma 4 (Area bound for minimizers). If M is connected1 then

|M ∩Br(x)| ≤ Crn

for C = C(n).

Proof. Since M is properly embedded, we can find E ⊂ Rn+1 open with
∂E = M . We can assume that M intersects ∂Br(x) transversally. Then,

Σ̂ = ∂Br(x) ∩ Ē

has ∂Σ̂ = ∂(M ∩ Br(x)) and |Σ̂| ≤ |∂Br(x)| ≤ Crn. Thus, the assertion
follows from the area-minimizing property of M . □

Thus, if Mk is a sequence of connected minimizers then we can pass the
area-measures

µMk
(Ω) = |Mk ∩ Ω|

to a weak (subsequential) limit µMk
⇀ µ. The measure µ does not fully

encode the minimizing property of the Mk, so one should also pass the open
sets Ek with ∂Ek = Mk to a L1

loc limit E. The measure µ is “compatible”
with the set E in the sense of the divergence theorem:

(2) µ(Ω) = sup

{ˆ
E

divX : suppX ⋐ Ω, |X| ≤ 1

}
:= P (E; Ω).

The fact that P (E; Ω) < ∞ for Ω precompact is the definition of E being
a Caccioppoli set. We call µ the boundary measure of E and note that one

1Since we are considering the oriented theory, the connected assumption is crucial
here. For example, R2 ×Z ⊂ R3 can be seen to minimize (among oriented competitors)
on compact sets but has volume growth in balls of order O(r3).
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can show that E is minimizing in the sense that P (F ; Ω) ≥ P (E; Ω) for
F∆E ⋐ Ω.

See e.g. [Giu84, Mag12] for a complete treatment of Caccioppoli sets.

Exercise 1. Prove the ≥ direction of (2). (This doesn’t need the Mk

to be minimizers.) Find an example of non-minimizing hypersurfaces Mk

limiting to µ and E as above, but with < in (2).

Now that we’ve defined minimizing Caccioppoli sets we can explicitly
state the strong maximum principle.

Theorem 5 (Simon [Sim87]). If Ω1 ⊂ Ω2 are minimizing Caccioppoli sets
then their boundary measures have either suppµ1∩ suppµ2 = ∅ or µ1 = µ2

and Ω1 = Ω2 up to a set of measure zero.

We’ll discuss this more later.

Exercise 2. Prove Theorem 5 if ∂Ωi are smooth connected hypersurfaces.
Hint: Near a point of contact, ∂Ω1, ∂Ω2 will both be the graphs of smooth
solutions u1, u2 to the MSE (over the same tangent plane). Using Taylor’s
theorem, prove that u2 − u1 satisfies an elliptic PDE and thus conclude
that ∂Ω1 agrees with ∂Ω2 locally. Finish by extending this to a global
statement.

3. The Simons cone

Define the Simons cone (see [Sim68]) by

C = {(x,y) ∈ R4 × R4 : |x| = |y|} ⊂ R8.

Note that (i) C is dilation invariant λC = C (this is why we call C a cone)
and (ii) C is not a smooth hypersurface at the origin.

The area measure on C is the boundary measure of the Caccioppoli set
E := {|x| > |y|} but we won’t be too precise about this below.

Theorem 6 (Bombieri–De Giorgi–Giusti [BDGG69]). There’s S ⊂ Rn+1 \
C smooth star-shaped area-minimizing so that λ−1S limits to C as λ → ∞.
In particular C is area-minimizing on compact sets.

Proof. ODE methods yield a smooth star-shaped O(4) × O(4) minimal
hypersurface S ⊂ Rn+1 \ C. If Σ ⋐ S did not minimize area, then we

could touch the minimizer Σ̂ by dilations λS. Star-shapedness guarantees
interior contact, a contradiction. The same argument proves that C is area-
minimizing, or we can observe that λ−1S limits to C and use the results
asserted above. □

Exercise 3. Let E ⊂ R2 be {(x, y) ∈ R2 : |x| < |y|}. Prove that E is not
minimizing.
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4. The Plateau problem

In the alternative proof of Theorem 1 (minimal graphs minimize area)
and the proof of Theorem 6 (the Simons cone is minimzing), we referenced
minimization with fixed boundary. We pause to discuss this more pre-
cisely (we’ll return to this later). Consider Γn−1 ⊂ Rn+1 a smooth, closed.
oriented, embedded submanifold. For simplicity here we will assume that
Γ ⊂ ∂B1(0) is connected but neither of these assumptions are necessary
(cf. [HS79, Whi83, CMS23a, CMS23b]). Choose a smooth Caccioppoli set
F ⊂ Rn+1 so that F ∩ ∂B1(0) = Γ is a transversal intersection.

Theorem 7. There exists a Caccioppoli set E with P (E;B2(0)) minimal
among all sets with E∆F ⊂ B1(0).

For µ the boundary measure of E, let reg µ denote the set of points where
µ is the area measure of a smooth hypersurface and sing µ = suppµ\ reg µ.

Example 8. If µ is the area measure for the Simons cone C then reg µ =
C \ {0} and sing µ = {0}.

We’ll later give most of the details for the following classical result. In
fact, we’ll discuss improvements [HS85, CMS23a, CMS23b] of the estimate
in Theorem 9 for generic boundary data Γ.

Theorem 9 (Regularity of solution to Plateau problem, Federer [Fed70],
Allard [All75], Hardt–Simon [HS79]). Let µ denote the boundary measure of
µ. Then the Hausdorff dimension of sing µ satisfies dimH sing µ ≤ n − 7.
In particular when n + 1 ∈ {2, . . . , 7}, there is a smooth solution to the
Plateau problem.

We also note that µ is always completely regular near Γ. We will not
discuss this further (although it is very important in the proof of Lemma
41 below).

5. Monotonicity formula

Suppose that Mn ⊂ Rn+1 minimizes area on compact sets. Define the
density ratio

ΘM(x, r) :=
|M ∩Br(x)|

ωnrn
.

The following result is a key tool used in the study of area-minimizers.

Theorem 10 (Monotonicity). The density ratio r 7→ ΘM(x, r) is non-
decreasing.

Proof. The co-area formula gives

d

dr
|Σ ∩Br(x)| ≥ |Σ ∩ ∂Br(x)|.
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The cone at x over Σ∩ ∂Br(x) has area
r
n
|Σ∩ ∂Br(x)| and is a competitor

for |Σ ∩Br(x)|, so
n

r
|Σ ∩Br(x)| ≤ |Σ ∩ ∂Br(x)| ≤

d

dr
|Σ ∩Br(x)|.

Integrating this yields the monotonicity formula. □

One can check that the monotonicity formula continues to hold even for
the boundary measure µ of a minimizing Caccioppoli set. In particular, on
a minimizing cone C we have ΘC(0, r) constant. The converse holds as is
seen by examining the case of equality above.

Theorem 11. If r 7→ Θµ(x, r) is constant for all r > 0 then µ is a cone
at x.

Note that the monotonicity formula allows us to define the local density

Θµ(x) := lim
r→0

Θµ(x, r).

Exercise 4. If x ∈ reg µ then Θµ(x) = 1.

Proposition 12 (Upper semi-continuity of density). If µk ⇀ µ and xk → x
then

Θµ(x) ≥ lim sup
k→∞

Θµk
(xk).

Proof. For a.e. r > 0 we have that Θµk
(xk, r) → Θµ(x, r). Thus, mono-

tonicity yields
Θµ(x, r) ≥ lim sup

k→∞
Θµk

(x).

Sending r → 0 finishes the proof. □

Exercise 5. Check explicitly that Proposition 12 holds for the Simons cone
C.

6. Tangent cone at infinity

Suppose that Mn ⊂ Rn+1 is smooth, connected, and minimizes area on
compact sets. We saw the a priori estimate ΘM(x, r) ≤ C = C(n) in
Lemma 4. Thus, monotonicity implies that

ΘM(∞) := lim
r→∞

ΘM(x, r)

exists.

Exercise 6. Check that the value of the limit is independent of x.

We can use this to extract information aboutM at large scales as follows.
Choose a sequence λk → ∞ so that Mk := λ−1

k M has a weak subsequential
limit µ. Thanks to the scale-invariance of the area-ratio, we see that

Θµ(0, r) = lim
k→∞

ΘMk
(0, r) = ΘM(0, λkr) = ΘM(∞).

Thus Θµ(0, r) is independent of r and thus µ is the area-measure of an
area-minimizing cone C. We call C a tangent cone to M at infinity.
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Example 13. The surfaces S described in Theorem 6 have tangent cone
C the Simons cone at infinity.

Remark 14. Although it will not be relevant here, we emphasize that in
general, the cone C could a priori depend on the sequence λk. Proving
uniqueness of tangent cones is a major open problem in the area and has
only been achieved in certain special cases [AA81, Sim08, Sim93, Szé20].

Theorem 15. If M has a tangent cone at infinity given by a hyperplane
Rn ⊂ Rn+1 then M is itself a hyperplane.

Proof. We have ΘM(∞) = 1. Assume that 0 ∈ M . Note that

lim
r→0

ΘM(0, r) = 1

since M is smooth and thus flat on small scales. Thus, ΘM(0, r) = 1 for
all r > 0, so M is a cone. In particular, M agrees with any tangent cone
at infinity. □

7. Infinitesimal tangent cones

If µ is a boundary measure of a Caccioppoli set and x ∈ suppµ, we can
argue by analogy with the previous argument and subsequentially blow-up
(instead of blow-down) µ at x to find a tangent cone C with Θ(C) = Θµ(x).
The analogue of Theorem 15 is much more difficult to prove in this setting,
since we do not assume any a priori regularity of µ.

Theorem 16 (De Giorgi [DG61]). If x ∈ suppµ has Θµ(x) ≤ 1 + εn then
x ∈ reg µ.

See e.g., [Giu84, Sim83] for the proof.
Combined with upper-semicontinuity of density we have

Corollary 17 (Singular points don’t limit to smooth points). If µk ⇀ µ
and suppµk ∋ xk → x ∈ reg µ then xk ∈ reg µk for k large.

Corollary 18. reg µ ⊂ suppµ is relatively open.

8. Cone splitting

Suppose C ⊂ Rn+1 is a non-flat cone. Then 0 ∈ sing C. The Simons
cone shows that this might be the only singular point. However, if x ∈
sing C \{0} then we can take an iterated tangent cone at x. (This idea was
introduced by Federer [Fed69, Fed70].)

Proposition 19. Any iterated tangent cone at x splits as R×C ′ for C ′ ⊂ Rn

minimizing cone.

Proof. Dilation around 0 preserves C and looks like translation in the x
direction near x. Thus, the iterated tangent cone will be invariant in the
x direction. □

Exercise 7. Show that R× C ′ is minimizing if and only if C ′ is.
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We can iterate this until we find a cone C̃k ⊂ Rk+1 with sing C̃ = {0}.
Alternatively, we can use this to gain information about a cone C with
potentially large singular set. We set

spine C := {ΘC(x) = Θ(C)}.
Proposition 20 (Cone splitting). The set spine C is a linear subspace and
the cone splits as C = (spine C)× C̃ for C̃ ⊂ (spine C)⊥.
Proof. If x ∈ spine C \ {0} then the monotonicity formula at x holds with
equality at all scales. Thus C is conical around x, so C agrees with its
tangent cone at x which splits a line in the x direction by Proposition 19.
Iterating this proves the assertion. □

Recall that by Exercise 3 the cross in R2 isn’t minimizing. In fact, this
holds for any non-flat cone in R2 (with basically the same proof). This
leads to the following result (used in several places in the sequel).

Corollary 21. If µ is the boundary measure of a minimizing Caccioppoli
set then reg µ ⊂ suppµ is connected and dense.

Proof. Since singular points limit to singular points, if x is in the interior
of sing µ then any tangent cone at x has no regular points. This holds for
iterated tangent cones until we get to Rn−1×C̃1. But C̃1 is a flat line in R2,
contradiction. Connectedness follows from a similar argument but requires
a bit more care. See [Ilm96, Theorem A(ii)] for a proof in a much more
general setting. □

9. Bernstein’s problem and minimizing cones

Theorem 22 (Fleming [Fle62], Almgren [Alm66], Simons [Sim68]). For
2 ≤ n+1 ≤ 7 if Cn ⊂ Rn+1 is a minimizing cone then C is a flat hyperplane.

The previous section proves this is valid for n+1 = 2 and that it suffices
to prove Theorem 22 for C with sing C = {0}. We’ll discuss ingredients
of the proof of this later, but for now we’ll content ourselves with several
important consequences.

Corollary 23. If C7 ⊂ R8 is a minimizing cone then sing C ⊂ {0}.
Proof. Otherwise an iterated tangent cone would split as R×C ′ for C ′ ⊂ R7

non-flat. □

Corollary 24. For Cn ⊂ Rn+1 non-flat minimizing, dim spine C ≤ n− 7

Proof. We saw that C = (spine C)× C ′ for C ′ ⊂ (spine C)⊥. Since C ′ cannot
be flat we get

8 ≤ dim(spine C)⊥ = n+ 1− dim spine C.
This proves the assertion. □

Corollary 25 (Bernstein theorem for minimizers). For 2 ≤ n + 1 ≤ 7, if
Mn ⊂ Rn+1 minimizes area on compact sets then M is a flat hyperplane.
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The dimension restriction in Theorem 22 and Corollary 25 is sharp as
shown by the surface S from Theorem 6. In particular, we have resolved
most of the “affirmative” dimensions for the original Bernstein problem:

Corollary 26 (Bernstein theorem). For 2 ≤ n ≤ 6 if u solves the MSE on
Rn then it’s affine.

10. De Giorgi’s splitting theorem

We’re just missing n = 7 from the “affirmative” direction.

Theorem 27 (De Giorgi [DG65]). Let u solve the MSE on Rn and Mn =
graph(u) ⊂ Rn+1 be the corresponding minimizing graph. Any tangent cone
at infinity of M splits as C ′ × R.

Corollary 28. If u solves the MSE on R7 then2 it’s affine.

Remark 29. The non-flat solution to the MSE on R8 constructed by
Bombieri–De Giorgi–Giusti has precisely Simons cone × R as its tangent
cone at infinity.

Proof of Theorem 27. Let λk → ∞ so that λ−1
k M converges to the fixed

tangent cone C. Since M is a graph, M + λken+1 is disjoint from M .
Rescaling, λ−1

k M + en+1 is disjoint from λ−1
k M . Passing this to the limit,

we find that C lies weakly to one side of C + en+1.
The strong maximum principle (Theorem 5) thus implies that either (i)

C+en+1 = C or (ii) C+en+1 is disjoint from C. In case (i) we thus conclude
that C + λen+1 = C for all λ ∈ R (since C is invariant under dilation)
proving that C is invariant in the en+1 direction. To handle case (ii) we
need Proposition 30 below. □

Proposition 30 (No non-flat graphical cones). If Cn ⊂ Rn+1 is a mini-
mizing cone so that C + en+1 is disjoint from C then C is a flat plane.

Note that the dilation invariance of C shows that the assumptions in
Proposition 30 imply that C + λen+1 is disjoint from C for all λ ̸= 0.
As such, we can regard this as a generalized Bernstein theorem (holding
in all dimensions). Proposition 30 will follow from Jacobi field analysis
as discussed later, but intuitively, the reason this should be true is that
elliptic regularity should not allow a solution to the MSE to have a cone-
type singularity.3

Remark 31. We compare Proposition 30 with the corresponding fact for
mean curvature flow. The analogue of minimizing cone is the space-time
track of a shrinker flowing by dilation. In contrast with Proposition 30, it’s
easy to see that the shrinking sphere centered at (0, 0) and the shrinking

2Strictly speaking, when De Giorgi proved Theorem 27, minimizing cones were known
to be flat in R4 by [Alm66] (the Simons [Sim68] classification was not yet known); as
such, at the time Theorem 27 resolved the flatness of minimal graphs over R3.

3See [Giu84, Theorem 16.9] for a proof along these lines.
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sphere centered at (0, t) generate disjoint space-time tracks; in fact, up
to crossing with Rk these are the only smooth shrinkers that exhibit this
phenomenon. This has the consequence that spherical (and more generally
cylindrical) singularities are “generic.” See [CM12, CCMS20, CCMS21,
CCS23].

11. One sided improvement à la Hardt–Simon

Since we would like to prove a generic regularity result, it’s crucial to
have an improvement mechanism near a singularity (modeled on a cone).
We’ll see how to prove such a result out of Proposition 30.

The strongest possible such result is as follows:

Theorem 32 (Existence of the foliation; Hardt–Simon [HS85], Wang [Wan22]).
If Cn ⊂ Rn+1 is a minimizing cone then writing Rn+1 \ C = U+ ∪U−, there
exists S± ⊂ U± smooth star-shaped minimizing hypersurface so that λ−1S±
limits to C as λ → ∞.

Remark 33. When C is the Simons cone then S is the same (up to scaling)
as the S described in Theorem 6.

Note that the star-shaped condition guarantees that {λS} foliates Rn+1

(taking S = S+,−S = S−, 0S = C, etc).

Theorem 34 (Uniqueness of the foliation; Hardt–Simon [HS85]). If sing Cn =
{0} then the boundary measure µ to a minimizing Caccioppoli set with
suppµ ⊂ U± agrees with λS± for some λ > 0.

Remark 35. When sing C is larger than just 0, the uniqueness result in
Theorem 34 is widely open. Some partial progress has been achieved in the
case of certain cylindrical cones Rk × C [Sim21, ES23].

We’ll prove a replacement for Theorem 34 that is weaker, but holds for
all cones. A key ingredient is the nonexistence of graphical cones result
(Proposition 30).

Theorem 36 (Hardt–Simon replacement [CMS23a, Lemma 3.1]). For γ >
0 there’s η = η(γ, n) > 0 so that if Cn ⊂ Rn+1 is a non-flat minimizing cone
then there’s an ≤ (n− 7)-dimensional linear subspace Π so that if µ is the
boundary measure of a minimizing Caccioppoli set with suppµ∩supp C = ∅
and x ∈ suppµ ∩B1(0) with

Θµ(x) ≥ Θ(C)− η,

then x ∈ Uγ(Π).

Note that if Theorem 34 is known for C, then this result is trivial since
sing µ = ∅ and if C is non-flat then Θ(C) > 1 + εn (by De Giorgi regularity
Theorem 16).
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Proof. Suppose there’s a sequence of cones Ck for which the theorem fails
for η = k−1. Passing to a subsequence Ck ⇀ C with C non-flat (since
0 ∈ sing Cj). Let Π = spine C. (By Corollary 24, indeed dimΠ ≤ n− 7.)

By assumption there’s µk and xk ∈ suppµk ∩B1(0) with

Θµk
(xk) ≥ Θ(Ck)− k−1

but xk ̸∈ Uγ(Π). Passing to a further subsequence, µk ⇀ µ, xk → x.
Density upper semi-continuity yields

(3) Θµ(x) ≥ Θ(C).
Since µ lies weakly to one side of C, the strong maximum principle either
yields µ = C, in which case this implies that x ∈ spine C = Π (contradic-
tion) or µ lies strictly to one side.

Now, consider C̃ a tangent cone to µ at infinity. Note that C̃ lies weakly
to one-side of C but both cones contain 0. Thus, C̃ = C by the strong
maximum principle. Combined with (3) and monotonicity, we find that

Θ(C) ≤ Θµ(x) ≤ Θµ(x,∞) = Θ(C̃) = Θ(C).
Thus, µ is conical around x and thus agrees with its tangent cone at infinity,
C. This shows that C + x is disjoint from C. The graphical cones result
(Proposition 30) implies that C is flat, a contradiction. □

12. Hausdorff dimension

We recall here the Hausdorff dimension and measure. For A ⊂ Rn+1,
α ≥ 0, and δ ∈ (0,∞] we define

Hs
δ(A) := ωs inf

{
∞∑
j=1

rαj : rj < δ,A ⊂
∞⋃
j=1

Brj(xj)

}
and then (since δ 7→ Hs

δ(A) is non-decreasing) we define the Hausdorff
measure

Hs(A) = lim
δ→0

Hs
δ(A).

(It’s easy to see that Hs
δ isn’t Borel regular, while Hs is.) Finally we define

the Hausdorff dimension by

dimH A = inf{s ∈ [0,∞) : Hs(A) = 0}.

Lemma 37. Hs(A) = 0 if and only if Hs
∞(A) = 0.

Proof. Since Hs
∞(A) ≤ Hs(A) we can assume that Hs

∞(A) = 0. Thus,
for ε > 0 there’s A ⊂

⋃∞
j=1Brj(xj) with

∑∞
j=1 r

α
j < ε. We thus have

rj < ε1/α = o(1) as ε → 0. □

Lemma 38. If A ⊂ Rn+1 is bounded then

lim sup
r→0

Hs
∞(A ∩Br(x))

ωsrs
≥ 2−s > 0

for Hs-a.e. x ∈ A.
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Proof. For ρ > 0 let Aρ denote the points x ∈ A with

Hs
∞(A ∩Br(x)) ≤ (1− ρ)2−sωsr

s

for all r ∈ (0, ρ). It suffices to show that Hs
δ(Aρ) = 0 for all δ, ρ > 0.

Consider any cover Aρ ⊂
⋃∞

j=1 Brj(xj) with rj < δ. For each j, choose

yj ∈ Aρ∩Brj(xj) (otherwise we could discard this ball). Then, noting that

Aρ ∩Brj(xj) ⊂ Aρ ∩B2rj(yj),

we have

Hs
δ(Aρ∩Brj(xj)) ≤ Hs

∞(Aρ∩Brj(xj)) ≤ Hs
∞(Aρ∩B2rj(yj)) ≤ (1−ρ)ωsr

s
j .

The first inequality follows since rj < δ so any cover of Aρ ∩Brj(x) can be
replaced by balls of radius < δ. The second follows from choice of yj. The
third follows by definition of Aρ. Summing in j and taking the infimum
over covers we get

Hs
δ(Aρ) ≤ (1− ρ)Hs

δ(Aρ).

Thus Hs
δ(Aρ) = 0. This completes the proof. □

We can now use this to prove an estimate for the singular set of a “foli-
ation” by solutions to the Plateau problem.

Theorem 39 (Dimension of singular set of a family [CMS23b]). Suppose
that F is a family of minimizing boundaries in B1(0) ⊂ Rn+1 with pairwise
disjoint support. Let S := ∪µ∈F sing µ. Then dimH S ≤ n− 7.

Note that this immediately implies the regularity of a single solution to
the Plateau problem (Theorem 9) by taking F = {µ}. The proof is similar,
but differs in a mild way as compared to the “standard” proof of Theorem
9 (cf. [Sim83, Appendix A] and [Whi97]).

Proof. Suppose that n − 7 < s < dimH sing µ. Choose γ = γ(n, s) > 0
sufficiently small so that

(4) Hs
∞(U2γ(Rn−7 × {0}) ∩B1(0)) < ωs2

−s−1.

For j = 0, 1, . . . set

S(j) := {x ∈ S : 1 + jη ≤ Θµ(x) < 1 + (j + 1)η}.
By assumption, there’s some j so that Hs(S(j)) > 0. Thus, we see that
there must be x ∈ S(j) and λk → ∞ so that

(5) lim
k→∞

λs
kHs

∞(S(j) ∩Bλ−1
k
(x)) ≥ ωs2

−s > 0.

Set µk = λ−1
k (µ − x) and pass to a subsequence so that µk ⇀ C a (non-

flat) tangent cone. Fix η,Π as in Theorem 36 (for γ as above). If yk ∈
λ−1
k (S(j)− x)∩B1(0) then yk ∈ supp µ̃k for some rescaled boundary mea-

sure µ̃k ∈ λ−1
k (F − x). We thus have

Θµ̃k
(yk) ≥ 1 + jη > Θµ(x)− η
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so passing to a subsequential limit

Θµ̃(y) ≥ Θ(C)− η.

By Theorem 36, we see that y ∈ Uγ(Π). From this we find that for k
sufficiently large,

λ−1
k (S(j)− x) ∩B1(0) ⊂ U2γ(Π).

and thus
Hs

∞(λ−1
k (S(j)− x) ∩B1(0)) ≤ ωs2

−s−1.

by (4). This contradicts (5). □

Exercise 8. Consider n + 1 = 8. If µ is the boundary of a minimizing
Caccioppoli set show that sing µ is discrete. Assuming the result from
Theorem 34 prove the same thing for the singular set of a pairwise disjoint
family F in R8.

13. Generic regularity

We now turn to the main result of these notes.

Theorem 40 ([CMS23a, CMS23b]). Fix Γn−1 ⊂ ∂B1(0) ⊂ Rn+1 smooth,
closed oriented. There’s a small perturbation Γ′ ⊂ ∂B1(0) ⊂ Rn+1 so that
any solution to the Plateau problem E ′ for Γ′ has boundary measure with
dimH sing µ ≤ n−9. In particular when n+1 ∈ {8, 9, 10}, there is a smooth
solution to the Plateau problem.

We now relate Theorem 40 to the results in the previous section. Con-
sider {Γs}|s|≤δ ⊂ ∂B1(0) a unit speed foliation. Let F denote the set of all
solutions to the Plateau problem for Γs for some s ∈ (−δ, δ).

Lemma 41. If µ ̸= µ′ ∈ F then suppµ ∩ suppµ′ ∩B1(0) = ∅.
(If the minimizers for Γs are non-unique, then there will be two minimiz-

ers but they will only intersect at Γs.)

Sketch of the proof. Using the Hopf boundary lemma and smoothness near
Γs we see that suppµ ∩ suppµ′ occurs strictly away from the boundary.
We can now use a “cut-and-paste” argument to produce a new minimizer
with a (n− 1)-dimensional singular set. This is a contradiction. □

Thus, by Theorem 39, the singular set of the foliation satisfies dimH singS ≤
n − 7. Let s : suppF 7→ (−δ, δ) map x ∈ suppµ to the unique s so that
µ is the solution to the Plateau problem for Γs. Recalling that S is the
singular set of the elements of F , to prove Theorem 40 it suffices to prove
that s(S) ̸= (−δ, δ).

To explain how to this, we first define

(6) κn =
n− 2

2
−
√

(n− 2)2

4
− (n− 1).

Note that κn ∈ (1, 2]. For example κ7 = 2, κ8 ≈ 1.59. In general, κn

decreases towards 1 as n → ∞.
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Theorem 42. s|S is α-holder for any α < κn + 1.

Theorem 40 thus follows by combining dimH S ≤ n − 7, Theorem 42,
and the following result:

Proposition 43 (cf. [FROS20, Corollary 7.8]). Consider A ⊂ Rn+1 with
dimH A ≤ a and f : A → R α-Hölder. Then

• If a < α then H1(f(A)) = 0.

• If a ≥ α then for H1-a.e. s ∈ R we have dimH(f
−1(s)) ≤ a− α.

Exercise 9. Prove Proposition 43.

14. Jacobi fields

Definition 44. Let M be smooth with vanishing mean curvature H = 0.
A Jacobi field on M is u ∈ C∞

loc(M) solving

(7) ∆Mu+ |AM |2u = 0.

The Jacobi equation (7) is the linearization of the (geometric) minimal
surface equation H = 0. In particular:

Proposition 45. If Mt is a smooth family of hypersurfaces with H = 0
then the normal speed u at t = 0 satisfies the Jacobi equation.

For example, if M is a smooth (possibly incomplete) minimal hypersur-
face in Rn+1 then since M + ten+1 is a smooth family, the normal speed
u = ⟨en+1, ν⟩ is a Jacobi field.

Corollary 46. If Cn ⊂ Rn+1 is a minimal cone with C + en+1 disjoint
from C then up to changing the sign of the unit normal, u = ⟨en+1, ν⟩ is a
positive Jacobi field on reg C.

Proof. Local considerations give u ≥ 0. If u = 0 somewhere then the strong
maximum principle implies that the regular part (and thus all of C since
the regular part is dense) splits in the en+1 direction. □

15. Positive Jacobi fields on cones

This motivates us to study positive Jacobi fields on minimizing cones
Cn ⊂ Rn+1. Write M := reg C and let Σ = M ∩ ∂B1(0) denote the “link”
of the (regular part of the) cone.

Exercise 10. Show that Σ is a minimal surface in the sphere ∂B1(0) if
and only if M , the cone over Σ, is a minimal surface in Rn+1.

The Jacobi equation in “polar coordinates” becomes

∂2u

∂r2
+

n− 1

r

∂u

∂r
+

1

r2
(
∆Σu+ |AΣ|2u

)
= 0.
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Separation of variables thus suggests it’s useful to study the eigenvalue
problem for R ⊂ Σ

µ(Ω) := inf

{ˆ
Ω

|∇Σu|2 − |AΣ|2u2 : u ∈ C∞
c (Ω), ∥u∥L2 = 1

}
.

Theorem 47 (Eigenvalue estimate for link; Simons [Sim68]). If sing C =
{0} then µ(Σ) ≤ −(n − 1). Equality holds only for generalized4 Simons
cones.

Sketch of the proof. The key is the Simons equation

(8) |AΣ|∆Σ|AΣ|+ |AΣ|4 ≥
2

n− 1
|∇|AΣ||2 + (n− 1)|AΣ|2.

Given this, taking u = |AΣ| in µ(Σ) (and throwing away the gradient term)
we find

µ(Σ)

ˆ
Σ

|AΣ|2 ≤ −(n− 1)

ˆ
Σ

|AΣ|2,

proving the desired inequality. The equality case follows by analyzing
Σn−1 ⊂ ∂B1(0) with |AΣ| constant. □

Exercise 11. For sing C = {0} set M = reg C. Since C is minimizing,
it’s also stable:

´
M
|∇Mu|2 ≥

´
M
|AM |2u2 for u ∈ C∞

c (M). Assuming the
estimate from Theorem 47, prove Theorem 22.

In fact we need a uniform version of Theorem 47 that holds even when
C has a larger singular set.

Definition 48. For µ the boundary measure of a minimizing Caccioppoli
set, and define the regularity scale rµ(x) as follows. If x ∈ sing µ then set
rµ(x) = 0. Otherwise x ∈ reg µ denote the supremum of r > 0 so that
µ∩Br(x) is smooth and has second fundamental form bounded |A| ≤ r−1.

Exercise 12. If µk ⇀ µ and xk → x show that rµk
(xk) → rµ(x).

We let R≥ρ(µ) := {x : rµ(x) ≥ ρ}. Note that R≥ρ is bounded away from
sing µ.

Theorem 49 (Singular eigenvalue estimate; Simon [Sim08], Zhu [Zhu18],
Wang [Wan22]). There is ρ0 > 0 so that µ(R≥2ρ0(C)∩∂B1(0)) ≤ −(n−1).

Sketch of the proof. Using higher integrability estimates due to Schoen–
Simon–Yau [SSY75] one justifies taking |AΣ| as a test function to prove

µ(reg C ∩ ∂B1(0)) ≤ −(n− 1).

In the case of equality, the same argument as before proves that C is a
generalized Simons cone, and thus sing C = {0}. The assertion follows by
a compactness argument. □

4For appropriate p, q the sets {q|x| = p|y|} ⊂ Rp ×Rq will also be minimizing cones.
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Proposition 50 (Integral estimate for positive Jacobi field on cone; Simon
[Sim08], Wang [Wan22]). Suppose Σ′ ⊂ Σ is compact with possibly empty
smooth boundary and satisfy µ(Σ′) ≤ −(n− 1). Let φ > 0 attain µ(Σ′). If
u > 0 is a positive Jacobi field on reg C then

V (r) :=

ˆ
Σ′
φ(ω)u(rω)dω

satisfies

(V (r)rκn)′ ≤ 0

for κn defined in (6). i.e. = n−2
2

−
√

(n−2)2

4
− (n− 1).

Proof. We compute

V ′′(r) =

ˆ
Σ′
φ(ω)∂2

ru(rω)dω

= −n− 1

r
V ′(r)− 1

r2

ˆ
Σ′
φ(ω)(∆Σu+ |AΣ|2u)(rω)dω

= −n− 1

r
V ′(r)− 1

r2

ˆ
Σ′
u(rω)(∆Σφ+ |AΣ|2φ)(ω)dω

+
1

r2

ˆ
∂Σ′

u(rω)∂ηφ(ω)dω

≤ −n− 1

r
V ′(r)− n− 1

r2
V (r).

In the final step we used that φ is an eigenfunction of the operator on the
link, and also that u > 0 and the outwards normal derivative of φ is < 0
(since φ > 0 in the interior of Ω). The proof is now finished by analyzing
the resulting ODE inequality. See Exercise 13 below. □

Exercise 13. Find β, γ so that W (s) := V (s−1/β)sγ/β is convex. Using
this, finish the proof of Proposition 50.

We now observe that Proposition 50 allows us to prove the no-graphical
cones result:

Proof of Proposition 30. If C+en+1 is disjoint from C then we’ve seen that
⟨en+1, ν⟩ is a positive Jacobi field on reg C. Note that | ⟨en+1, ν⟩ | ≤ 1. For
Σ′, φ as in Proposition 50 we thus have that

V (r) ≤
ˆ
Σ′
φ(ω)dω = C

independent of r. On the other hand,

r−κnV (1) ≤ V (r)

so V (r) → ∞ as r → 0. □
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16. Separation estimates

Jacobi fields can also be used to estimate the behavior of two very close
minimal hypersurfaces. Since the Jacobi equation is the linearization of the
mean curvature equation H = 0, Taylor’s theorem (and some geometric
considerations) yields

Proposition 51. If Σi, Σ̂i are smooth minimal hypersurfaces converging to
a common Σ in C∞

loc(Σ) then the corresponding normal graphs ui, ûi over
increasing regions of Σ satisfy

∆Σwi + |AΣ|2wi = O(|wi|C2(|ui|C2 + |ûi|C2)

for wi = ûi − ui.

In particular, when Σi and Σ̂i are disjoint, so that wi > 0 we can use
the Harnack inequality (absorbing any second derivatives of wi into the
Laplacian) to pass wi(p)

−1wi to a C∞
loc-limit w, which will be a positive

Jacobi field on Σ.
We fix ρ0 as in the singular eigenvalue estimate (Theorem 49).

Theorem 52 (Separation estimates near a cone). Fix λ ∈ (0, κn + 1).

There’s A = A(λ, n) > 1 with the following property. Suppose that Ωk ⊂ Ω̂k

is a sequence of minimizing Caccioppoli sets whose boundary measures are
converging to some cone C. Then for k sufficiently large

d(R≥Aρ0(µk) ∩ ∂BA(0), supp µ̂k)/A ≤ A−λ

2
d(R≥ρ0(µk) ∩ ∂B1(0), supp µ̂k).

Proof. Suppose the estimate fails. Then, after writing µk, µ̂k locally as
graphs over compact subsets of reg C we can take the difference of the graphs
and pass to the limit (using Proposition 51 and subsequent discussion) to
find a positive Jacobi field u on reg C with

(9) inf
R≥ρ0

(C)∩∂B1(0)
w ≥ Aλ−1

2
inf

R≥Aρ0
(C)∩∂BA(0)

w

On the other hand, we can choose some R≥2ρ0 ⊂ Σ′ ⋐ Rρ0 ∩∂B1 and apply
the integral decay estimates (Proposition 50) to findˆ

Σ′
φ(ω)u(ω)dω ≤ Aκn

ˆ
Σ′
φ(ω)u(Aω)dω.

This trivially implies

inf
Σ′

u(ω) ≤ Aκn sup
Σ′

u(Aω)

Since Σ′ ⋐ Rρ0(C) ∩ ∂B1(0) we can apply the Harnack inequality to con-
clude that

(10) inf
R≥ρ0

(C)∩∂B1(0)
u ≤ HAκn inf

R≥Aρ0
(C)∩∂BA(0)

u
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for some constant H (which one can check is uniform with respect to all
cones C via a compactness argument). Since λ− 1 < κn by assumption, by
taking A large we see that (9) and (10) cannot simultaneously hold. □

In particular, combined with the following exercise this proves the strong
maximum principle.

Exercise 14. For µ1, µ2 as in Theorem 5 consider x ∈ suppµ1 ∩ suppµ2.
Show that to prove Theorem 5 via induction on dimension it suffices to
assume that for any λk → ∞, up to passing to a subsequence, λ−1

k (µ1 − x)
and λ−1

k (µ2 − x) converge to the same tangent cone. Hint: If not, then
there tangent cones C1 ̸= C2 lying weakly to one side. By rotating C2, we
can consider one sided contact at some point y ∈ (C1 ∩C2) \ {0}. Combine
cone splitting with the inductive hypothesis to conclude C1 = C2.

Proof of Theorem 5. Consider 0 ∈ suppµ1 ∩ suppµ2. By Exercise 14 any
sequence of rescalings have a subsequence that converges to the same cone
C. We have that C ̸= Rn since otherwise by De Giorgi’s theorem (Theorem
16) 0 would be a smooth point and thus we could argue as in Exercise 2 to
see that reg µ1 = reg µ2 locally. Using that the regular part is connected
open and dense (Corollaries 18 and 21).

We claim that there’s r0 > 0 so that for r < r0 it holds that

d(R≥Arρ0(µ1)∩∂BAr(0), suppµ2)/Ar ≤ A−λd(R≥rρ0(µ1)∩∂Br(0), suppµ2)/r

This follows by combining Theorem 52 with Exercise 14. Iterating this over
smaller scales, we find that5

d(R≥r0ρ0(µ1)∩∂Br0(0), suppµ2)/r0 ≤ Crλd(R≥rρ0(µ1)∩∂Br(0), suppµ2)/r.

Since µ1, µ2 have the same tangent cones at 0 and λ ≥ 0 the left side is
o(1) as r → 0. Thus the right side vanishes, implying there was smooth
contact elsewhere. As above, this completes the proof. □

A similar approach can be used to prove the Hölder estimate (Theorem
42). The basic idea is to iterate the separation estimates to the scale
r = |x − y| for x,y ∈ S. The complication, not present above, is that
one needs an estimate independent of the finitely many scales for which
the minimizers containing x and y will not look conical. Since there are
only finitely many, they do not present a major difficulty (see [CMS23b,
Lemma 4.2]). In particular, after taking C > 0 larger, we find that if
x ∈ sing µ1,y ∈ sing µ2 are sufficiently close then we still have

d(R≥r0ρ0(µ1)∩∂Br0(0), suppµ2)/r0 ≤ Crλd(R≥rρ0(µ1)∩∂Br(0), suppµ2)/r.

The right hand side is O(r−λ) since d(·)/r is scale invariant. On the other
hand, the left-hand-side holds at a fixed scale independent of r → 0. Using
linear estimates and the fact that the foliation is unit speed at the boundary,

5Strictly speaking the iteration only proves this for r = A−kr0 but this can be ex-
tended to all r < r0 via Harnack.
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we find that the right hand side is comparable to |s(x)−s(y)|. This proves
that

|s(x)− s(y)| ≤ C|x− y|λ

for any λ < κn + 1. This is precisely the estimate claimed in Theorem 42.

17. The stable Bernstein theorem

One way to weaken the hypothesis in the Bernstein theorem is to replace
minimizing with stability (minimizing to second order). A minimal (i.e.
mean curvature H = 0) hypersurface Mn ⊂ Rn+1 is stable if

´
M
|∇Mu|2 ≥´

M
|AM |2u2 for u ∈ C∞

c (M) (see also Exercise 11).
A key distinction between stable minimal hypersurfaces and area-minimizers

is that stable hypersurfaces do not a priori satisfy the volume growth es-
timate |M ∩ Br(0)| = O(rn) (cf. Lemma 4). Because of this, the stable
Bernstein problem “if Mn ⊂ Rn+1 is a complete stable minimal hypersur-
face, is it a flat plane?” is not fully resolved in all dimensions (clearly, the
non-flat area-minimizer in R8 and beyond is also stable minimal, so this
problem is only new for R3 through R7.

Theorem 53 (Fischer-Colbrie–Schoen [FCS80], do Carmo–Peng [dCP79],
Pogorelov [Pog81]). If M2 ⊂ R3 is a complete stable minimal hypersurface
then it’s a flat plane.

Theorem 54 (Chodosh–Li [CL21]). If M3 ⊂ R4 is a complete stable min-
imal hypersurface then it’s a flat plane.

(Later, alternative proofs were given in [CL23, CMR22].)
In full generality, the stable Bernstein problem is still unresolved in

R5,R6, and R7. However, some important partial results are available:

Theorem 55 (Schoen–Simon–Yau [SSY75], Schoen–Simon [SS81]). IfMn ⊂
Rn+1 is a complete stable minimal hypersurface with |M ∩ Br(0)| = O(rn)
then it’s a flat plane for 3 ≤ n+ 1 ≤ 7.

The same result for immersed M6 in R7 (as opposed to embedded) is not
solved (Theorem 55 for n+1 ≤ 6, as well as Theorems 53 and 54 are valid
for immersions).

Exercise 15. Prove Theorem 53 assuming quadratic area growth |M ∩
Br(0)| = O(r2). Hint: try to use a cut-off function φ in stability adapted
to dyadic scales |x| ∈ [2k, 2k+1]. Verify that this gives a proof of Bernstein’s
classical theorem for minimal graphs over R2 (Theorem 2).

A natural question is whether or not if Mn ⊂ Rn+1 is (connected) stable
minimal hypersurface then |M ∩ Br(0)| = O(rn). It’s possible that this
estimate might even hold for n+1 ≥ 8 (even when stability does not imply
flatness). On the other hand, the helicoid in R3 has area growth O(r3),
so stability would be necessary for such a result. Estimates of the volume
growth in the R3,R4 cases are known [Pog81, CL23].
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[Szé20] Gábor Székelyhidi, Uniqueness of certain cylindrical tangent cones, https:
//arxiv.org/abs/2012.02065 (2020).

[Wan22] Zhihan Wang, Mean convex smoothing of mean convex cones, https://

arxiv.org/abs/2202.07851 (2022).
[Whi83] Brian White, Regularity of area-minimizing hypersurfaces at boundaries with

multiplicity, Seminar on minimal submanifolds, Ann. of Math. Stud., vol.
103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 293–301. MR 795244

[Whi97] , Stratification of minimal surfaces, mean curvature flows, and har-
monic maps, J. Reine Angew. Math. 488 (1997), 1–35. MR 1465365

[Zhu18] Jonathan J. Zhu, First stability eigenvalue of singular minimal hypersurfaces
in spheres, Calc. Var. Partial Differential Equations 57 (2018), no. 5, Paper
No. 130, 13. MR 3844511

https://arxiv.org/abs/2012.02065
https://arxiv.org/abs/2012.02065
https://arxiv.org/abs/2202.07851
https://arxiv.org/abs/2202.07851

	1. Minimal graphs
	2. Limits of minimizers
	3. The Simons cone
	4. The Plateau problem
	5. Monotonicity formula
	6. Tangent cone at infinity
	7. Infinitesimal tangent cones
	8. Cone splitting
	9. Bernstein's problem and minimizing cones
	10. De Giorgi's splitting theorem
	11. One sided improvement à la Hardt–Simon
	12. Hausdorff dimension
	13. Generic regularity
	14. Jacobi fields
	15. Positive Jacobi fields on cones
	16. Separation estimates
	17. The stable Bernstein theorem
	References

